Introduction
oo

Background COP for Android Evaluation Future Work
oo 000000 oo o

Context-oriented Programming
for Mobile Devices: JCop on Android

Christopher Schuster!, Malte Appeltauer?, Robert Hirschfeld?

L University of California, Davis, USA

2 Software Architecture Group, Hasso-Plattner-Institut, Germany

Workshop on Context-oriented Programming (COP) 2011, Lancaster, UK

July 25, 2011

Conclusion
o

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o o

Outline

@ Introduction

(@ Background
o JCop
o Android

@) COP for Android
o Example Android Application
o Challenges for a JCop-Android Integration
o Example application with JCop

(@ Evaluation
(&) Future Work
(® Conclusion

Introduction Background COP for Android Evaluation Future Work Conclusion
®0 oo 000000 oo o o

Context of mobile applications

o Location

o Battery status

o Network availability and bandwidth
o Airplane mode, Silent mode

Introduction Background COP for Android Evaluation Future Work Conclusion
®0 oo 000000 oo o o

Context of mobile applications

o Location
o Battery status
o Network availability and bandwidth

o Airplane mode, Silent mode

o Date and Time
o User language and preferences
o Mobile device (screen resolution, processor speed, ...)

9 etc.

Introduction Background COP for Android Evaluation Future Work Conclusion
oce oo 000000 oo o o

Context-oriented programming on mobile devices

Context-oriented programming as solution?

Introduction Background COP for Android Evaluation Future Work Conclusion
oce oo 000000 oo o o

Context-oriented programming on mobile devices

Context-oriented programming as solution?

Lack of ready-to-use implementation on current mobile platforms

Evaluation Future Work Conclusion

[e]e] (o] (o]

Introduction Background
oe oo

Context-oriented programming on mobile devices

Context-oriented programming as solution?
Lack of ready-to-use implementation on current mobile platforms

Android is a good target
© open source
o free development tools available

o uses popular Java programming language

Introduction Background

Evaluation Future Work Conclusion
oce oo .

[e]e] (o] (o]

Context-oriented programming on mobile devices

Context-oriented programming as solution?
Lack of ready-to-use implementation on current mobile platforms

Android is a good target
© open source
o free development tools available

o uses popular Java programming language

= Let’s explore how to provide COP for Android!

Introduction Background COP for Android Evaluation Future Work Conclusion
oo °0 000000 oo o o

JCop?

o COP extension to Java

!Malte Appeltauer et al. “Event-specific software composition in
context-oriented programming”. In: Proceedings of the 9th International
Conference on Software Composition. Lecture Notes in Computer Science.
Malaga, Spain: Springer-Verlag, 2010, pp. 50-65. 1SBN: 3-642-14045-9,
978-3-642-14045-7.

Introduction Background COP for Android Evaluation Future Work
oo °0 000000 oo o

JCop?

o COP extension to Java

o Behavioral variations as partial methods in layers

I

!Malte Appeltauer et al. “Event-specific software composition in

context-oriented programming”. In: Proceedings of the 9th International
Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50-65. 1SBN: 3-642-14045-9,
978-3-642-14045-7.

Conclusion
o

Introduction Background COP for Android Evaluation Future Work
oo °0 000000 oo o

JCop?

o COP extension to Java

o Behavioral variations as partial methods in layers
o Layer activation/deactivation
o either explicit (using with)

Malte Appeltauer et al. “Event-specific software composition in

context-oriented programming”. In: Proceedings of the 9th International
Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50-65. 1SBN: 3-642-14045-9,
978-3-642-14045-7.

Conclusion
o

Introduction Background COP for Android Evaluation Future Work
oo °0 000000 oo o

JCop?

o COP extension to Java

o Behavioral variations as partial methods in layers
o Layer activation/deactivation
o either explicit (using with)
o or declarative (using a context object and
pointcuts)

Malte Appeltauer et al. “Event-specific software composition in

context-oriented programming”. In: Proceedings of the 9th International
Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50-65. 1SBN: 3-642-14045-9,
978-3-642-14045-7.

Conclusion
o

Introduction Background COP for Android Evaluation Future Work

[e]e] oce 000000

[e]e] (o]

Android? overview

o Linux-based open source software stack for
mobile devices

o Java as intended language for application
developers
o besides Scala, JRuby and native C libraries

o Application code needs to subclass and
implement certain Android classes to fit in the
framework

Conclusion

o

javac dx
Ajava |——| A.class | classes.dex [

A.apk

2Android is a trademark of Google Inc.

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo ©00000 oo o o

Example application: Astronomy Picture of the Day

class Main extends Activity {
void onCreate(..) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main) ;
new DownloadEntryTask () .execute (this);

}
class DownloadEntryTask extends AsyncTask {
Entry doInBackground(..) {
client = AndroidHttpClient.newInstance ()
Entry e = loadEntry();
loadPicture (e);

Introduction Background COP for Android Evaluation Future Work
oo oo 0®0000 oo o

Basic Android concepts

Activity
o include graphical user interface
o usually starting point of an application

o cannot execute blocking calls

Conclusion
o

Introduction Background COP for Android Evaluation Future Work Conclusion
o

[e]e] [e]e] [e] Jelejele] [o] (o] (o]

Basic Android concepts

Activity

o include graphical user interface

o usually starting point of an application

o cannot execute blocking calls
AsyncTasks

o CPU-intensive tasks

o blocking calls like webservice invocations

o cannot access user interface

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 0®0000 oo o o

Basic Android concepts

Activity
o include graphical user interface
o usually starting point of an application
o cannot execute blocking calls
AsyncTasks
o CPU-intensive tasks
o blocking calls like webservice invocations
o cannot access user interface
No network available
o Current implementation would fail silently

o Traditional implementation would have to use conditional
statements

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 008000 oo o o

Challenges for a JCop-Android Integration

©

Thread control done by Android and separated into GUI and
blocking threads

©

Framework approach based on callbacks

©

Technical limitations
o No custom classloaders
o No dynamic code generation
o No bytecode manipulation

©

dx tool makes certain assumptions

o private method calls and constructors will never use the virtual
method table
o certain class flags are not used

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o o

Static contexts

Problem:
o Callbacks make control flow-based with context activation
difficult
o Explicit context activation hard due to lack of control over
thread creation

o Most context-dependent behavior in mobile applications
driven by external events and information from the
environment like sensor data

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o o

Static contexts

Problem:

o Callbacks make control flow-based with context activation
difficult

o Explicit context activation hard due to lack of control over
thread creation

o Most context-dependent behavior in mobile applications
driven by external events and information from the
environment like sensor data

Our proposed solution:
o Language extension to change context activation
o static context is assumed to be always active

o Declarative layer activation by using when statements and
pointcuts

Introduction
oo

Background COP for Android
oo
Example a

0000e0

Evaluation Future Work
pplication with JCop

Conclusion
o

Entry e

loadEntry (main) ;
loadPicture (e,

main) ;

public layer OfflineEntry {

public Entry DownloadEntryTask

.loadEntry (Context ctx) {
return new Entry("No network available");
}
}
public static context NetworkContext ({
when (!Network.connected()) {
with (OfflineEntry);
}
}

Introduction
oo

Background COP for Android
oo 00000e
Demo

Evaluation
oo

Future Work
o

Conclusion
o

Demo

for Android Evaluation Future Work Conclusion

Introduction Background cop
0000 o

ol
[e]e] [e]e] (e]e] [e (o] (o]

Evaluation

o COP successfully applied to the example application

o JCop processes the bytecode of the application = works on
Android 2.3 and later

o Context data, like sensor values, are only accessed during
execution of context-dependent code

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 ®0 o o
Evaluation

o COP successfully applied to the example application

JCop processes the bytecode of the application = works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

©

©

Performance evaluation
o No real benchmark yet

©

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 ®0 o o

Evaluation

©

COP successfully applied to the example application

JCop processes the bytecode of the application = works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

©

©

Performance evaluation

o No real benchmark yet
o But evaluated whether overhead is feasible

©

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 ®0 o o

Evaluation

COP successfully applied to the example application

©

©

JCop processes the bytecode of the application = works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

©

Performance evaluation
o No real benchmark yet
o But evaluated whether overhead is feasible
o Compared runtime performance for simple code snippit with
three different implementation strategies

©

OP for Android Evaluation Future Work Conclusion
00000 oce o o

Introduction Background C ol
oo oo o o

Results of the performance evaluation

Approach ‘ Runtime
No context-dependency 2901ms
Conditional if branching | 2959ms
JCop on Android 3450ms

Table: Measured runtime performance?

o JCop adds additional overhead for layer management
o Implementation on Android not significantly different

o Measured runtime performance still within reasonable limits

3Virtual Android 2.3.1 device inside the Android Emulator on an Intel Core
Duo processor with 1.66 GHz running a Linux 2.6.35 kernel

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo . o

Future Work

o Using a realistic benchmark for performance evaluation

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo . o

Future Work

o Using a realistic benchmark for performance evaluation

o Evaluate effects of COP on code quality and modularization
by using code metrics

o e.g. lines of code, cyclomatic complexity or class cohesion

Introduction Background Co
o o . o

[e]e] [e]e]

Future Work

for Android Evaluation Future Work Conclusion
o

o Using a realistic benchmark for performance evaluation

o Evaluate effects of COP on code quality and modularization
by using code metrics
o e.g. lines of code, cyclomatic complexity or class cohesion

o Adding additional, more complex, types of context variables
like GPS location or user preferences

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o .

Conclusion

o Context important for mobile applications

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o .

Conclusion

o Context important for mobile applications

o Successfully used JCop to implement an Android application

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o .

Conclusion

o Context important for mobile applications
o Successfully used JCop to implement an Android application

o JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application’s control flow

Introduction Background C
o

for Android Evaluation Future Work Conclusion
oo oo o

OP for
0000 o o .

[o]

Conclusion

©

Context important for mobile applications

©

Successfully used JCop to implement an Android application

©

JCop’'s pointcuts and static contexts useful for modifying
behavior without relying on the application’s control flow

©

Initial results for performance evaluation look reasonable

Introduction Background COP for Android Evaluation Future Work Conclusion

[e]e] [e]e] 000000

[e]e] (o] L]

Conclusion

©

Context important for mobile applications

©

Successfully used JCop to implement an Android application

©

JCop’'s pointcuts and static contexts useful for modifying
behavior without relying on the application’s control flow

©

Initial results for performance evaluation look reasonable

©

Applying COP to mobile applications seems promising

Introduction Background COP for Android Evaluation Future Work Conclusion
oo oo 000000 oo o .

Conclusion

©

Context important for mobile applications

©

Successfully used JCop to implement an Android application

©

JCop’'s pointcuts and static contexts useful for modifying
behavior without relying on the application’s control flow

©

Initial results for performance evaluation look reasonable

©

Applying COP to mobile applications seems promising

©

Further research possible for location-based applications

Introduction Background COP for Android Evaluation Future Work
oo oo 000000 oo o

Appendix: Static behavior adaptation

o Repeated execution of one method

o Statically changed after 1000 invocations

for (i = 0; 1 < 1000; i++) {
countFromZero () ;

}
for (i = 0; i < 1000; i++) |
countFromOne () ;

o Average measured runtime: 2901ms

Conclusion
o

Introduction Background COP for Android Evaluation Future Work
oo oo 000000 oo o

Appendix: Conditional behavior adaptation

o Repeated execution controlled by an if statement

boolean state = false;
for (int i1 = 0; 1 < 2000; i++) {
if (i == 1000) {
state = true;
}
if (state) {
countFromOne () ;
} else {
countFromZero () ;

o Average measured runtime: 2959ms

Conclusion
o

Introduction Background COP for Android Evaluation Future Work

[e]e]

Appendix: Behavior adaptation by JCop on Android

[e]e] 000000 [e]e] (o]

o Variations in the repeated execution by using JCop

GlobalState.setActive (false);
for (int 1 = 0; 1 < 2000; i++) {
if (i == 1000) { GlobalState.setActive (true);
countZero () ;
}
public layer CountlLayer {
public int Main.countZero() {
Main.CountOne () ;
P}
public static context CountContext ({
when (GlobalState.isActive()) {
with (CountLayer);
I

o Average measured runtime: 3450ms

}

Conclusion
o

	Introduction
	Background
	JCop
	Android

	COP for Android
	Example Android Application
	Challenges for a JCop-Android Integration
	Example application with JCop

	Evaluation
	Future Work
	Conclusion

