
Introduction Background COP for Android Evaluation Future Work Conclusion

Context-oriented Programming

for Mobile Devices: JCop on Android

Christopher Schuster1, Malte Appeltauer2, Robert Hirschfeld2

1 University of California, Davis, USA
2 Software Architecture Group, Hasso-Plattner-Institut, Germany

Workshop on Context-oriented Programming (COP) 2011, Lancaster, UK

July 25, 2011



Introduction Background COP for Android Evaluation Future Work Conclusion

Outline

1 Introduction

2 Background
JCop
Android

3 COP for Android
Example Android Application
Challenges for a JCop-Android Integration
Example application with JCop

4 Evaluation

5 Future Work

6 Conclusion



Introduction Background COP for Android Evaluation Future Work Conclusion

Context of mobile applications

Location

Battery status

Network availability and bandwidth

Airplane mode, Silent mode

Date and Time

User language and preferences

Mobile device (screen resolution, processor speed, ...)

etc.



Introduction Background COP for Android Evaluation Future Work Conclusion

Context of mobile applications

Location

Battery status

Network availability and bandwidth

Airplane mode, Silent mode

Date and Time

User language and preferences

Mobile device (screen resolution, processor speed, ...)

etc.



Introduction Background COP for Android Evaluation Future Work Conclusion

Context-oriented programming on mobile devices

Context-oriented programming as solution?

Lack of ready-to-use implementation on current mobile platforms

Android is a good target

open source

free development tools available

uses popular Java programming language

) Let's explore how to provide COP for Android!



Introduction Background COP for Android Evaluation Future Work Conclusion

Context-oriented programming on mobile devices

Context-oriented programming as solution?

Lack of ready-to-use implementation on current mobile platforms

Android is a good target

open source

free development tools available

uses popular Java programming language

) Let's explore how to provide COP for Android!



Introduction Background COP for Android Evaluation Future Work Conclusion

Context-oriented programming on mobile devices

Context-oriented programming as solution?

Lack of ready-to-use implementation on current mobile platforms

Android is a good target

open source

free development tools available

uses popular Java programming language

) Let's explore how to provide COP for Android!



Introduction Background COP for Android Evaluation Future Work Conclusion

Context-oriented programming on mobile devices

Context-oriented programming as solution?

Lack of ready-to-use implementation on current mobile platforms

Android is a good target

open source

free development tools available

uses popular Java programming language

) Let's explore how to provide COP for Android!



Introduction Background COP for Android Evaluation Future Work Conclusion

JCop1

COP extension to Java

Behavioral variations as partial methods in layers

Layer activation/deactivation

either explicit (using with)
or declarative (using a context object and
pointcuts)

1Malte Appeltauer et al. \Event-speci�c software composition in

context-oriented programming". In: Proceedings of the 9th International

Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50{65. isbn: 3-642-14045-9,

978-3-642-14045-7.



Introduction Background COP for Android Evaluation Future Work Conclusion

JCop1

COP extension to Java

Behavioral variations as partial methods in layers

Layer activation/deactivation

either explicit (using with)
or declarative (using a context object and
pointcuts)

1Malte Appeltauer et al. \Event-speci�c software composition in

context-oriented programming". In: Proceedings of the 9th International

Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50{65. isbn: 3-642-14045-9,

978-3-642-14045-7.



Introduction Background COP for Android Evaluation Future Work Conclusion

JCop1

COP extension to Java

Behavioral variations as partial methods in layers

Layer activation/deactivation

either explicit (using with)

or declarative (using a context object and
pointcuts)

1Malte Appeltauer et al. \Event-speci�c software composition in

context-oriented programming". In: Proceedings of the 9th International

Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50{65. isbn: 3-642-14045-9,

978-3-642-14045-7.



Introduction Background COP for Android Evaluation Future Work Conclusion

JCop1

COP extension to Java

Behavioral variations as partial methods in layers

Layer activation/deactivation

either explicit (using with)
or declarative (using a context object and
pointcuts)

1Malte Appeltauer et al. \Event-speci�c software composition in

context-oriented programming". In: Proceedings of the 9th International

Conference on Software Composition. Lecture Notes in Computer Science.

Malaga, Spain: Springer-Verlag, 2010, pp. 50{65. isbn: 3-642-14045-9,

978-3-642-14045-7.



Introduction Background COP for Android Evaluation Future Work Conclusion

Android2 overview

Linux-based open source software stack for
mobile devices

Java as intended language for application
developers

besides Scala, JRuby and native C libraries

Application code needs to subclass and
implement certain Android classes to �t in the
framework

2Android is a trademark of Google Inc.



Introduction Background COP for Android Evaluation Future Work Conclusion

Example application: Astronomy Picture of the Day

class Main extends Activity {
void onCreate(..) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
new DownloadEntryTask().execute(this);

}
}
class DownloadEntryTask extends AsyncTask {

Entry doInBackground(..) {
client = AndroidHttpClient.newInstance();
Entry e = loadEntry();
loadPicture(e);

}
}



Introduction Background COP for Android Evaluation Future Work Conclusion

Basic Android concepts

Activity

include graphical user interface

usually starting point of an application

cannot execute blocking calls

AsyncTasks

CPU-intensive tasks

blocking calls like webservice invocations

cannot access user interface

No network available

Current implementation would fail silently

Traditional implementation would have to use conditional
statements



Introduction Background COP for Android Evaluation Future Work Conclusion

Basic Android concepts

Activity

include graphical user interface

usually starting point of an application

cannot execute blocking calls

AsyncTasks

CPU-intensive tasks

blocking calls like webservice invocations

cannot access user interface

No network available

Current implementation would fail silently

Traditional implementation would have to use conditional
statements



Introduction Background COP for Android Evaluation Future Work Conclusion

Basic Android concepts

Activity

include graphical user interface

usually starting point of an application

cannot execute blocking calls

AsyncTasks

CPU-intensive tasks

blocking calls like webservice invocations

cannot access user interface

No network available

Current implementation would fail silently

Traditional implementation would have to use conditional
statements



Introduction Background COP for Android Evaluation Future Work Conclusion

Challenges for a JCop-Android Integration

Thread control done by Android and separated into GUI and
blocking threads

Framework approach based on callbacks

Technical limitations

No custom classloaders
No dynamic code generation
No bytecode manipulation

dx tool makes certain assumptions

private method calls and constructors will never use the virtual
method table
certain class ags are not used



Introduction Background COP for Android Evaluation Future Work Conclusion

Static contexts

Problem:

Callbacks make control ow-based with context activation
di�cult

Explicit context activation hard due to lack of control over
thread creation

Most context-dependent behavior in mobile applications
driven by external events and information from the
environment like sensor data

Our proposed solution:

Language extension to change context activation

static context is assumed to be always active

Declarative layer activation by using when statements and
pointcuts



Introduction Background COP for Android Evaluation Future Work Conclusion

Static contexts

Problem:

Callbacks make control ow-based with context activation
di�cult

Explicit context activation hard due to lack of control over
thread creation

Most context-dependent behavior in mobile applications
driven by external events and information from the
environment like sensor data

Our proposed solution:

Language extension to change context activation

static context is assumed to be always active

Declarative layer activation by using when statements and
pointcuts



Introduction Background COP for Android Evaluation Future Work Conclusion

Example application with JCop

Entry e = loadEntry(main);
loadPicture(e, main);

public layer OfflineEntry {
public Entry DownloadEntryTask

.loadEntry(Context ctx) {
return new Entry("No network available");

}
}

public static context NetworkContext {
when (!Network.connected()) {
with (OfflineEntry);

}
}



Introduction Background COP for Android Evaluation Future Work Conclusion

Demo

Demo



Introduction Background COP for Android Evaluation Future Work Conclusion

Evaluation

COP successfully applied to the example application

JCop processes the bytecode of the application ) works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

Performance evaluation

No real benchmark yet
But evaluated whether overhead is feasible

Compared runtime performance for simple code snippit with
three di�erent implementation strategies



Introduction Background COP for Android Evaluation Future Work Conclusion

Evaluation

COP successfully applied to the example application

JCop processes the bytecode of the application ) works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

Performance evaluation

No real benchmark yet

But evaluated whether overhead is feasible

Compared runtime performance for simple code snippit with
three di�erent implementation strategies



Introduction Background COP for Android Evaluation Future Work Conclusion

Evaluation

COP successfully applied to the example application

JCop processes the bytecode of the application ) works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

Performance evaluation

No real benchmark yet
But evaluated whether overhead is feasible

Compared runtime performance for simple code snippit with
three di�erent implementation strategies



Introduction Background COP for Android Evaluation Future Work Conclusion

Evaluation

COP successfully applied to the example application

JCop processes the bytecode of the application ) works on
Android 2.3 and later

Context data, like sensor values, are only accessed during
execution of context-dependent code

Performance evaluation

No real benchmark yet
But evaluated whether overhead is feasible

Compared runtime performance for simple code snippit with
three di�erent implementation strategies



Introduction Background COP for Android Evaluation Future Work Conclusion

Results of the performance evaluation

Approach Runtime

No context-dependency 2901ms
Conditional if branching 2959ms
JCop on Android 3450ms

Table: Measured runtime performance3

JCop adds additional overhead for layer management

Implementation on Android not signi�cantly di�erent

Measured runtime performance still within reasonable limits

3Virtual Android 2.3.1 device inside the Android Emulator on an Intel Core

Duo processor with 1.66 GHz running a Linux 2.6.35 kernel



Introduction Background COP for Android Evaluation Future Work Conclusion

Future Work

Using a realistic benchmark for performance evaluation

Evaluate e�ects of COP on code quality and modularization
by using code metrics

e.g. lines of code, cyclomatic complexity or class cohesion

Adding additional, more complex, types of context variables
like GPS location or user preferences



Introduction Background COP for Android Evaluation Future Work Conclusion

Future Work

Using a realistic benchmark for performance evaluation

Evaluate e�ects of COP on code quality and modularization
by using code metrics

e.g. lines of code, cyclomatic complexity or class cohesion

Adding additional, more complex, types of context variables
like GPS location or user preferences



Introduction Background COP for Android Evaluation Future Work Conclusion

Future Work

Using a realistic benchmark for performance evaluation

Evaluate e�ects of COP on code quality and modularization
by using code metrics

e.g. lines of code, cyclomatic complexity or class cohesion

Adding additional, more complex, types of context variables
like GPS location or user preferences



Introduction Background COP for Android Evaluation Future Work Conclusion

Conclusion

Context important for mobile applications

Successfully used JCop to implement an Android application

JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application's control ow

Initial results for performance evaluation look reasonable

Applying COP to mobile applications seems promising

Further research possible for location-based applications



Introduction Background COP for Android Evaluation Future Work Conclusion

Conclusion

Context important for mobile applications

Successfully used JCop to implement an Android application

JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application's control ow

Initial results for performance evaluation look reasonable

Applying COP to mobile applications seems promising

Further research possible for location-based applications



Introduction Background COP for Android Evaluation Future Work Conclusion

Conclusion

Context important for mobile applications

Successfully used JCop to implement an Android application

JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application's control ow

Initial results for performance evaluation look reasonable

Applying COP to mobile applications seems promising

Further research possible for location-based applications



Introduction Background COP for Android Evaluation Future Work Conclusion

Conclusion

Context important for mobile applications

Successfully used JCop to implement an Android application

JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application's control ow

Initial results for performance evaluation look reasonable

Applying COP to mobile applications seems promising

Further research possible for location-based applications



Introduction Background COP for Android Evaluation Future Work Conclusion

Conclusion

Context important for mobile applications

Successfully used JCop to implement an Android application

JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application's control ow

Initial results for performance evaluation look reasonable

Applying COP to mobile applications seems promising

Further research possible for location-based applications



Introduction Background COP for Android Evaluation Future Work Conclusion

Conclusion

Context important for mobile applications

Successfully used JCop to implement an Android application

JCop's pointcuts and static contexts useful for modifying
behavior without relying on the application's control ow

Initial results for performance evaluation look reasonable

Applying COP to mobile applications seems promising

Further research possible for location-based applications



Introduction Background COP for Android Evaluation Future Work Conclusion

Appendix: Static behavior adaptation

Repeated execution of one method

Statically changed after 1000 invocations

for (i = 0; i < 1000; i++) {
countFromZero();

}
for (i = 0; i < 1000; i++) {
countFromOne();

}

Average measured runtime: 2901ms



Introduction Background COP for Android Evaluation Future Work Conclusion

Appendix: Conditional behavior adaptation

Repeated execution controlled by an if statement

boolean state = false;
for (int i = 0; i < 2000; i++) {
if (i == 1000) {

state = true;
}
if (state) {

countFromOne();
} else {
countFromZero();

}
}

Average measured runtime: 2959ms



Introduction Background COP for Android Evaluation Future Work Conclusion

Appendix: Behavior adaptation by JCop on Android

Variations in the repeated execution by using JCop

GlobalState.setActive(false);
for (int i = 0; i < 2000; i++) {
if (i == 1000) { GlobalState.setActive(true); }
countZero();

}
public layer CountLayer {

public int Main.countZero() {
Main.CountOne();

}}
public static context CountContext {

when (GlobalState.isActive()) {
with (CountLayer);

}}

Average measured runtime: 3450ms


	Introduction
	Background
	JCop
	Android

	COP for Android
	Example Android Application
	Challenges for a JCop-Android Integration
	Example application with JCop

	Evaluation
	Future Work
	Conclusion

