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Abstract—Currently, Reflectance Transformation Imaging
(RTI) technology is restricted to desktop and high performance
computing devices. In recent years, mobile devices and tablets
have become ubiquitous due to their increased performance.
However, the size of RTI files (≈100 MB) limits the range of
portable devices capable of displaying RTI files. In this paper,
we explore different compression techniques, and develop an RTI
viewer prototype for both Android and iOS devices. Experiments
with JPEG, JPEG2000, lossless compression show the resulting
error for compression ratios of 30:1 is comparable to the error
of traditional two-dimensional images. For higher compression
rates, we present a novel αβ-JPEG algorithm which compresses
color and reflectance information individually.

I. INTRODUCTION

Reflectance Transformation Imaging (RTI) describes a file
format and a set of methods that extend traditional two-
dimentional photography with the ability to dynamically ma-
nipulate the lighting condition when displaying an image file.

RTI images are typically created by taking 15 to 60 pictures
of the object of interest with a standard digital single-lens
reflex camera while varying the position of the light along a
notional hemisphere. A black sphere placed adjacent to the
object has a highlight cast on its surface by the flash in each
instance: a small, bright speck that allows the software to
calculate the direction of light for each shot. This data allows
the RTI builder to construct a composite image in which each
pixel is stored as a set of lighting parameters instead of a
static color. This enables the viewer to dynamically relight
the image and to enhance 3D features of the surface custom
light-dependent filters.

Relightable images expose subtle surface indentations that
are hard to distinguish without computer enhancemen and are
therefore particularly useful for the study of ancient artifacts
and archaeological materials like the Dead Sea Scrolls [1] or
stelae from the Bronze Age [4].

The rise in portable device adoption have raised particular
interest in their potential application in interactive museum
exhibits and for personal uses. However, current tools available
at Cultural Heritage Imaging offer no web or mobile device
support. The prime issue for RTI on mobile devices is the
conflict between bigger and more detailed data sets (100 MB
and larger) [5] and the limited memory capacity and network
bandwidth. Compression mitigates this problem. However,
previous efforts on compression of relightable images did not
address the specific challenges on portable devices, particu-
larly for interactive real-time rendering of compressed images.

In this paper, we introduce and evaluate four compression
algorithms which are all based on standard image compression

techniques and thereby have existing implementations on
mobile devices with fast decompression. Our experiments with
archaeological RTI data showed that simple independent com-
pression of all light coefficients can be optimized by restricting
the light calculation to the luminosity and averaging the color
components across all light positions. For high compression
rates, this algorithm yields better image quality without adding
significant computational overhead for decompression.

Additionally, we present a working prototype implementa-
tion for RTI rendering on iOS as well as Android, and outline
how the proposed compression algorithms could be integrated.

Overall, our paper’s contribution is an evaluation of dif-
ferent RTI compression algorithms, a novel algorithm that
outperforms JPEG for high compression rates and RTI viewer
implementations for both iOS and Android.

II. RELATED WORK

Malzbender et. al. [13] proposed the first RTI implemen-
tation, Polynomial Texture Mapping (PTM) which models the
light calculation with a second-order biquadratic polynomial.
Other approaches include 4D Light Fields [12], [6] and Dense
Photometric Stereo (PST) [28]. In general, these techniques
allow more accurate lighting calculations but also require a
more complex capturing process or specialized equipment.

Variations on the original PTM method have been explored,
including a series of alternative basis including Spherical
Harmonics [24], Zonal Harmonics [25], eigen hemispheri-
cal harmonics [9], spherical radial basis function [11] and
Principal Component Analysis (PCA) [16]. A simple JPEG-
Compression for PTM was presented by Motta et. al. [17].

Alternatively, lighting can be computed with a bidirectional
texture function (BTF) [3], [14] which requires a different
capturing process than RTI. See Haindl et. al. [7] for a survey
on different BTF compression methods. Most noteworthy
are 3D wavelet compression algorithms. Rodler et. al. [21]
originally proposed 3D wavelet compression for fast access to
large volume multi-dimensional data. Additionally, wavelets
have been used to compress spherical harmonics basis [10],
Spherical Radial Basis Functions [11], and Singular Value
Decomposition [2].

There is ongoing research on solutions for streaming re-
lightable images. Ramanathan et. al. [20] propose a rate-
distortion optimized approach for light fields using packet
scheduling and Schwartz et. al. [22] proposed a remote render-
ing system for BTF. In order to achieve real time interaction,
a low-latency rendering system needs to be used, whether on
a single server [23] or in the cloud [15].
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III. METHODS AND IMPLEMENTATION

The two most successful transformations used in image
compression are Discrete Cosine Transform (DCT), which is
used by the JPEG algorithm, and Discrete Wavelet Transform
(DWT), which is used by JPEG 2000. We applied both
procedures to RTI images of archelogical objects which were
provided by the Cultural Heritage Imaging (CHI). Based on
our observation, we propose and evaluate an optimization to
the JPEG algorithm called αβ − JPEG using the same RTI
data sets. As an additional comparator, we also tested the
generic lossloss Lempel-Ziv-Welch (LZW) compression on the
provided RTI files. Finally, we implemented RTI viewers for
both Android and iOS to demonstrate the feasibility of RTI
rendering on mobile devices.

A. JPEG2000 and JPEG Compression

For comparing and finding a better compression method,
we applied both JPEG and JPEG2000 to each coefficient and
color plane.

Polynomial Texture Maps (PTMs) as introduced by
Malzbender et al.[13] combine the information of the pixels
in corresponding locations (u, v) with intensity dependencies
L(u, v) on the light direction (lu, lv) by using a second-order
biquadratic polynomial as model as shown in Equation 1. We
store each pixel (u, v) with the six polynomial coefficients, in
addition to its RGB values. Then, we read the six coefficients
planes and the three color planes from the original PTM files
to compress each plane with JPEG2000 and JPEG method
respectively. For the decompression process, each plane is
encoded separately and then the PTM file is generated with
the corresponding file header.

The implementation was done using MATLAB’s imwrite
function to compress each plane with JPEG2000 and JPEG
method respectively. The compressed data can be decoded
with the function imread. This method is similar to
PTM_FORMAT_JPEG_LRGB in the PTM File format [17].

R(u, v) = L(u, v)Rn(u, v)
G(u, v) = L(u, v)Gn(u, v)
B(u, v) = L(u, v)Bn(u, v)

(1)

B. αβ-JPEG Compression

RTI exposes surface structure and geometry in the form of
shadowing, which typically involves a change in luminosity
and rarely affects the hue of the surface colors. In order to
exploit this observation for compression, the image can be
encoded with a view and lighting-dependent second order
spherical harmonics (SH) equation with 9 coefficients for
the luminosity and two additional channels for color infor-
mation which is averaged to be lighting-independent. Using
this encoding, the Discrete Cosine Transform can be applied
individually for each channel. The α parameter controls the
compression rate of the reflectance coefficients while β con-
trols the compression rate of color information.

A first prototype of the αβ-compression was implemented
in Python using numPy [18] to convert RTI files with 9 SH

Fig. 1. The compression includes a conversion from RGB to YCbCr color
space and a separate compression using α to control the JPEG compression
quality of the light-dependent luminosity (Y) and β to control the compression
quality of the light-independent color components (Cb and Cr).

coefficients to compressed CRTI files and vice versa. The
compression is shown in Fig. 1 and involves combining all
three color channels to get RGB-triples per pixel grouped
by coefficient. For 2-order spherical harmonics, this results
in 9 RGB images. Each of these images was then converted
to the YCbCr color space using the Python Imaging Library
(PIL [19]) yielding a triple for each pixel with Y representing
the luminosity and Cb and Cr representing the blue and red
color channels. The color channels were then averaged across
all SH coefficients to yield a single gray-scale image for each
of the two color channels. The resulting images were then
compressed individually using a Discrete Cosine Transform
with α and β controlling the compression rate and packed
along size information in a single file. The decompression
process works accordingly but in reverse.

The parameters α and β represent a trade-off between com-
pression rate, image quality and geometric detail. Depending
on the concrete relightable image, different choices for α and β
work better for different use cases. For example, the chromatic
information in a picture of an ancient oxidized copper coin
might be less interesting to an archelogist than its (color-
independent) surface structure which suggests a high α and
low β value. In contrast, the image quality of a relightable
painting would suffer from too aggressive compression of
the color component which indicates that high β values are
necessary to maintain image quality.

C. LZW compression

The method we used for lossless compression of RTI
images was Lempel-Ziv-Welch (LZW) compression. LZW
compression creates a dictionary of long substrings in the
file and makes those long substrings available for encoding.
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LZW is a lossless compression method and therefore loses no
information from the original and adds no new noise between
the encoding and decoding stages. We saved the RTI images
in the Tagged Image File Format (TIFF) which has built in
compatibility with LZW compression. TIFF is a flexible file
format that can hold both lossless and lossy images.

In order to implement and test the compression of the
RTI images, we loaded the files into MATLAB and encoded
them with the imwrite function which has built in support
of LZW compression for TIFF files. The compression rate
was measured using the resulting file size. LZW is a lossless
compression method so in contrast to the lossy compression
methods like αβ-JPEG and JPEG2000, it was not necessary
to evalutate the error.

D. Mobile Devices

We created a RTI Android viewer. The code to load and
render the images to an Open GL ES view was developed
in C++. The touch interaction was written in Java and for
the interface between the two we used Java Native Interface.
We also created an RTI Viewer for iOS based on an existing
JavaScript viewer. The web content is presented through a web
view. We used the CORDOVA SDK 2.9 to generate an XCode
5.0.2 project. This SDK allowed us to include all the web and
image files in the app itself. When the app is launched, a local
http server is started which contains the web content. To load
a relightable file, we make an AJAX request to the local server
and load it as a Binary Large Object (blob). This blob is then
loaded as a binary sequence and rendered.

In both the Android and iOS versions, the user can touch
the surface of the device to move the origin of the light. The
view is updated in real-time which enables intuitive study and
exploration of surface details of the relighted object. We out-
line how it would be possible in the future to run compression
on the mobile devices. To integrate JPEG 2000 compression
method with mobile RTI viewers, use the jj2000 library1 on
Android and the Open-JPEG project2 on iOS. Kivy3 would
make it possible to run our Python implementation of the αβ-
JPEG Compression on both iOS and Android.

IV. EXPERIMENT

A. Compression algorithms

For the experiment, we consider both lossless model and
lossy compression algorithms. The lossless LZW compression
was evalutated by comparing the file size of the original
images and compressed files for eight different RTI files.

For evaluating lossy compression, we applied both JPEG
and JPEG2000 method to each coefficient and RGB plane of
three different PTM images using the method described above
and measured the compression ratio, Peak Signal to Noise
Ratio (PSNR) and Root Mean Squared Error (RMSE) between
the original PTM file and the compressed and decompressed
PTM file.

1https://code.google.com/p/jj2000/
2http://www.openjpeg.org/
3http://kivy.org/

Fig. 2. The relightable image vase.rti was used to evaluate both lossy
and lossless compression techniques.

a) Papyrus b) Tablet c) Bird
Fig. 3. The original images shown are based on three uncompressed PTM
files with varying lighting direction.

The two methods use different parameters controlling the
final compression result. For JPEG2000 compression, ‘Com-
pression Ratio’ was used directly while the compression ratio
of JPEG compression depends on the ‘Quality’ parameter.

Additionally, αβ-JPEG compression was evaluated by com-
pressing the RTI file vase.rti (see Fig. 2) using different
values for α and β and decompressing the compressed file.
Both the original RTI file and the decompressed RTI file were
then rendered with different light positions. The difference
between the rendered images was measured in terms of the
Mean Structural Similarity Index (SSIM) [27] using a Python
MSSIM library [26], and in terms of the Peak Signal to Noise
Ratio (PSNR) and Root Mean Squared Error (RMSE) using
ImageMagick [8].

B. Mobile Devices

The web version developed by Wei Lao and the Android
viewer were compared by loading 3 RTI files one at a time.
We analyzed file loading time and lighting recalculation time
in response to touch and mouse-move events.

The test device for the Android version was a Galaxy Nexus
with Android 4.3, a dual-core 1.2 GHz (ARM) Cortex-A9
processor; PowerVR SGX540 GPU; 16 GB storage; 1 GB
RAM and a 1280 x 720 pixel display. The JavaScript Viewer
was tested on a PC with Mozilla Firefox 27.0.1 on Microsoft
Windows 7 Professional SP1, an Intel Core i3 M 330 @
2.13GHz dual core processor; 1GB ATI Mobility Radeon 5650
GPU; 8 GB RAM and a 1920 x 1080 pixels display.
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Table I
COMPRESSION RATIOS USING LZW COMPRESSION.

File name Compression Ratio

Boat.rti 1.759
vase.rti 1.053
cuniform.rti 1.437
_Boat2.rti 2.345
Wallet.rti 1.673
Antiques.rti 1.298
Clay.rti 1.530
watch.rti 1.869

Fig. 4. For the original images in Fig. 3, the relationship between PSNR,
RMSE and Compression Ratio respectively with the two methods are shown.

In order to test the iOS viewer, we used XCode 4 iOS
Simulator on iPhone Retina mode. It ran on a OS X laptop
with a 2.8 GHz Intel Core 2 Duo processor, 4 GB RAM,
and a NVIDIA GeForce 9400M 256 MB graphics card.
We tested the system with vase.rti (see Fig. 2) and
tombstone512.ptm.

V. RESULTS

A. Compression algorithms

1) Lempel-Ziv-Welch(LZW): The LZW compression
scheme is lossless, therefore it perfectly reconstructs the
original images. Table I shows the size of eight original
images and the corresponding compressed images. The
resulting compression rate depends on the actual file but does
not exceed 3:1 which limits the effect of compression.

2) JPEG-2000: The results of comparing JPEG and JPEG-
2000 for each of the three original PTM images a), b) and c)
in Fig. 3 is shown Fig. 4.

The results above indicate that for all three examples both
PTM-JPEG and PTM-JPEG2000 achieve similar PSNR or
RMSE than traditional two-dimensional JPEG compression
for a given compression ratio. JPEG2000 method outperforms
JPEG method when the compressed images have the same
compression ratio. Also, when the compressed images have
the same RMSE or PSNR, JPEG2000 method has greater
compression ratio than JPEG method does.

In addition to the measurement results, a visual compar-
ison between JPEG and JPEG2000 method for very high
compression ratios (≈ 30) is given in Fig. 5. We chose the
light direction when the pixel point (350,500) has the largest
luminance, which ensures the images look not too dim to show
details. For the JPEG compression, the ‘block effect’ of the
Discreate Cosine Transform is visible while the Wavelet based
compression JPEG2000 causes the rendered images to appear
blurry. However, the image quality is still comparable to
traditional compression of two-dimensional images, therefore
both of the two methods could be capable for compressing
PTM files. We know the size of images encoding by JPEG2000
is smaller than those encoding by JPEG. Therefore, under the
similar compression ratio, JPEG2000 method achieves a better

JPEG JPEG2000
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Fig. 5. For each example, the corresponding compressed images resulting
from JPEG and JPEG2000 are shown with a compression rate of 96%-98%.
The decompressed images from the JPEG method exhibit a ‘block effect’.
This corresponds to the increasing PNSR and RMSE under high compression
rates. The decompressed images resulting from JPEG2000 compression do
not have blocks but appear more blurry instead.
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Table II
JAVASCRIPT AND ANDROID LOADING AND RELIGHTING TIMES

Name Size Resolution Loading Relighting
JS Android JS Android

coin 6239kb 600x400 1̃s 4s 1s t < 0.5s

vase 3966kb 320x470 1s 3s 1s t < 0.5s

watch 9113kb 720x480 2s 6s 1s t < 0.5s

quality than JPEG compression.
3) αβ-JPEG: The results of the αβ-JPEG compression are

shown in Fig. 6. The heatmap indicates that both α and β
determine the resulting error. Finding the right values for α and
β depends on the given relightable image and is potential topic
for future work. The direct comparison between a standard
JPEG compression for each of the 9 planes and the αβ-JPEG
compression shows that an error which is independent of the
compression ratio. This error is caused by averaging the color
information over all coefficients which is done by the αβ-
JPEG compression and causes information loss independent
of the actual parameters α and β. This error causes αβ-
JPEG to yield worse results than JPEG for relatively low
compression ratios. However, for high compression ratios,
αβ-JPEG outperforms standard JPEG in SSIM, PSNR and
RMSE. SSIM values close to 1.0 indicate a high structural
similarity which is generally better for evaluating perceived
image quality than PSNR or RMSE [27]. The measured
SSIM values show that αβ-JPEG is preferable to JPEG for
compression ratios of 50 and above.

B. Mobile Devices

We were able to render relightable images encoded in both
RTI and PTM formats, on iOS and Android environments.
Fig. 7 shows the data set image vase.rti in RTI format
rendered on the iOS Simulator, while Fig. 7 shows the same
image (different light direction) rendered in the Android
environment.

The results regarding the Android/Web comparison are
summarized in Table II. The light recalculation time was
significantly shorter in the Android device, however the initial
image loading was faster in the Webviewer. On average the
Web Viewer took ∼ 1 second to recalculate the rendered image
under different light conditions, while in Android the delay
was hardly noticeable. We believe this is due to the use of
OpenGL ES 2.0 on the Android version leading to graphics
hardware acceleration. In order to extend the comparison to
the iOS version, we would need to test it in an actual device.
Finally, the drawn images on iOS, Android, and Web Viewer
did not present noticeable artifacts in the tested resolutions.

VI. CONCLUSION AND FUTURE WORK

This paper presented four different compression algorithms
which are based on standard image compression and therefore
can be implemented sufficiently fast for real-time rendering on
current mobile devices.
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Fig. 6. The heatmap shows the resulting Root Mean Squared Error (RMSE)
for different combinations of α and β values. The plots show the Structural
Similarity Index (SSIM), Peak Signal to Noise Ratio (PSNR) and RMSE of
αβ-JPEG and standard JPEG for varying compression ratios.
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Fig. 7. vase.rti sample image rendered on Android 4.3 (left) and on iOS
Simulator (right).

The results shown in the previous section indicate that
simple JPEG compression of all coefficients can be optimized
by treating the color components as light-independent which
results in a better image quality as measured by PSNR for
high compression rates.

By using the standard image compression implementations
which are well-supported for mobile devices, we avoid poten-
tial computational overhead for decompression. Additionally,
the implementation of RTI viewers for both iOS and Android
show that the approach can be practically used on current
mobile devices. The implementation of RTI compression for
mobile devices is especially useful for museum exhibits of
archelogical objects which often involve detailed and large
datasets that also benefit from the intuitive touch interface.

In order to support large high-definition datasets which do
not fit into main memory of these devices, tiling, streaming or
hybrid solutions are necessary. Combining the techniques for
compressing RTI data presented in this paper with streaming
or tiling is a promising area of future research.
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