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ABSTRACT
Program verifiers statically check correctness properties of pro-
grams with annotations such as assertions and pre- and postcondi-
tions. Recent advances in SMT solving make it applicable to a wide
range of domains, including program verification. In this paper, we
describe esverify, a program verifier for JavaScript based on SMT
solving, supporting functional correctness properties comparable
to languages with refinement and dependent function types. esver-
ify supports both higher-order functions and dynamically-typed
idioms, enabling verification of programs that static type systems
usually do not support. To verify these programs, we represent
functions as universal quantifiers in the SMT logic and function
calls as instantiations of these quantifiers. To ensure that the verifi-
cation process is decidable and predictable, we describe a bounded
quantifier instantiation algorithm that prevents matching loops
and avoids ad-hoc instantiation heuristics. We also present a for-
malism and soundness proof of this verification system in the Lean
theorem prover and a prototype implementation.

CCS CONCEPTS
• Theory of computation → Pre- and post-conditions; Logic
and verification; • Software and its engineering → Language
types; Functional languages;
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1 INTRODUCTION
The goal of program verification is to statically check programs for
properties such as robustness, security and functional correctness
across all possible inputs. For example, a program verifier might
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statically verify that the result of a sorting routine is sorted and is
a permutation of the input.

In this paper, we present esverify, a program verification system
for JavaScript. JavaScript, a dynamically-typed scripting language,
was chosen as target because its broad user base suggests many
beneficial use cases for static analysis, and because its availability
in browsers enables accessible online demos without local installa-
tion.

JavaScript programs often include idioms and patterns that do
not adhere to standard typing rules. For instance, the latest edi-
tion of the JavaScript/ECMAScript standard [ECMA-262 2017] in-
troduces promises such that a promise can be composed with other
promises and with arbitrary objects, as long as these objects have
a "then"method. Since esverify does not rely on static types, it can
easily accommodate these idioms.

JavaScript programs also often use higher-order functions. In or-
der to support verification of these functions, esverify introduces a
new syntax to constrain function values in terms of their pre- and
postconditions. Similarly, other JavaScript values such as numbers,
strings, arrays and classes can be used in assertions, including in-
variants on array contents and class instances.

The implementation of esverify, including its source code1 and
a live demo2 are available online. In summary, if a JavaScript pro-
gram uses features unsupported by esverify, it will be rejected
early; otherwise, verification conditions are generated based on
annotations, and each verification condition is transformed accord-
ing to a quantifier instantiation algorithm and then checked by an
SMT solver.

In addition to describing the design and implementation or es-
verify, we formally define a JavaScript-inspired, statically verified
but dynamically typed language, called λS . Functions in λS are an-
notated with pre- and postconditions, rendered as logical proposi-
tions. These propositions can include operators, refer to variables
in scope, denote function results with uninterpreted function calls,
and constrain the pre- and postconditions of function values. The
verification rules for λS involve checking verification conditions
for validity. This checking is performed by an SMT solver aug-
mented with decidable theories for linear integer arithmetic, equal-
ity, data types and uninterpreted functions. The key difficulty is
that verification conditions can include quantifiers, as function def-
initions in the source program correspond to universally quanti-
fied formulas in verification conditions. Unfortunately, SMT solvers
may not always perform the right instantiations, and therefore
quantifiers imperil the decidability of the verification process [Ge
and de Moura 2009; Reynolds et al. 2013]. We ensure that the veri-
fication process remains decidable and predictable, by proposing

1Implementation Source Code: https://github.com/levjj/esverify/
2Online live demo of esverify: https://esverify.org/try
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a bounded quantifier instantiation algorithm such that function
calls in the source program act as hints (“triggers”) that instantiate
these quantifiers. The algorithm only performs a bounded number
of trigger-based instantiations and thereby avoids brittle instantia-
tion heuristics and matching loops. Using this decision procedure
for verification conditions, we show that verification of λS is sound,
i.e. verifiable λS programs do not get stuck. The proof is formalized
in the Lean Theorem Prover and available online3.

To evaluate the expressiveness of this approach, we also include
a brief comparison with static refinement types [Vazou et al. 2014].
While a formalization and proof is beyond the scope of this paper,
refined base type and dependent function types can be translated
to assertions such that the resulting program is verifiable if the
original program is well-typed. This suggests that esverify is at
least as expressive as a language with refinement types.

To summarize, the main contributions of this paper are

(1) an approach for verifying dynamically-typed, higher-order
JavaScript programs,

(2) a bounded quantifier instantiation algorithm that enables
trigger-based instantiations without heuristics or matching
loops,

(3) a prototype implementation called esverify, and
(4) a formalization of the verification rules and a proof of sound-

ness in the Lean theorem prover.

The structure of the rest of the paper is as follows: Section 2 illus-
trates common use cases and relevant features of esverify, Section
3 outlines the verification process and the design of the implemen-
tation, Section 4 formally defines quantifier instantiation, as well
as the syntax, semantics, verification rules and a soundness theo-
rem for a core language λS , Section 5 compares the program veri-
fication approach to refinement type systems, Section 6 discusses
related work, and finally Section 7 concludes the paper.

2 VERIFYING JAVASCRIPT PROGRAMS
Our program verifier, esverify, targets a subset of ECMAScript/-
JavaScript. By supporting a dynamically-typed scripting language,
esverify is unlike existing verifiers for statically-typed program-
ming languages. We do not aim to support complex and advanced
JavaScript features such as prototypical inheritance and metapro-
gramming, leaving these extensions for future work. Instead, the
goal is to support both functional as well as object-oriented pro-
gramming paradigms with an emphasis on functional JavaScript
programs with higher-order functions.

2.1 Annotating JavaScript with Assertions
esverify extends JavaScript with source code annotations such as
functions pre- and postconditions, loop invariants and statically-
checked assertions. These are written as pseudo function calls with
standard Javascript syntax. While some program verification sys-
tems specify these in comments such as ESC/Java [Flanagan et al.
2002], this approach enables a better integration with existing tool-
ing support such as refactoring tools and syntax highlighters.

3Formal definitions and proofs in Lean: https://github.com/levjj/esverify-theory/

1 function max(a, b) {
2 requires(typeof(a) === 'number ');
3 requires(typeof(b) === 'number ');
4 ensures(res => res >= a);
5 ensures(res => res >= b); // does not hold
6 if (a >= b) {
7 return a;
8 } else {
9 return a; // bug
10 }
11 }

Listing 1: A JavaScript function max annotated with pre- and
postconditions.

1 function sumTo (n) {
2 requires(Number.isInteger(n) && n >= 0);
3 ensures(res => res === (n + 1) * n / 2);
4 let i = 0;
5 let s = 0;
6 while (i < n) {
7 invariant(Number.isInteger(i) && i <= n);
8 invariant(Number.isInteger(s));
9 invariant(s === (i + 1) * i / 2);
10 i++;
11 s = s + i;
12 }
13 return s;
14 }

Listing 2: A JavaScript function that shows
∑n
i=0 i =

(n+1)·n
2 .

Loop invariants are not inferred and need to be specified ex-
plicitly for all mutable variables in scope.

The assertion language is a subset of JavaScript. It does not sup-
port all of JavaScript’s semantics. In particular, it is restricted to
pure expressions that do not contain function definitions.

2.2 max: A Simple Example
Listing 1 shows an example of an annotated JavaScript program.
The calls to requires and ensures in lines 2–5 are only used for
verification purposes and excluded from evaluation. Instead of in-
troducing custom type annotations, the standard JavaScript typeof
operator is used to constrain the possible values passed as function
arguments. Due to a bug in line 9, the max function does not return
the maximum of the arguments if b is greater than a, violating the
postcondition in line 5.

2.3 Explicit Loop Invariants
For programs without loops or recursion, static analysis can check
various correctness properties precisely. However, the potential be-
havior of programs with loops or recursion cannot be determined
statically. esverify “overapproximated” the behavior of the program,
i.e. correct programs may be rejected if the program lacks a suffi-
ciently strong loop invariant or pre- or postcondition, but verified
programs are guaranteed to not violate an assertion regardless of
the number of iterations or recursive function calls.

https://github.com/levjj/esverify-theory/
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1 function inc (x) {
2 requires(Number.isInteger(x));
3 ensures(y => Number.isInteger(y) && y > x);
4 // implicit: ensures(y => y === x + 1);
5 return x + 1;
6 }
7 function twice (f, n) {
8 requires(spec(f, (x) => Number.isInteger(x),
9 (x,y) => Number.isInteger(y) &&
10 y > x));
11 requires(Number.isInteger(n));
12 ensures(res => res >= n + 2);
13 return f(f(n));
14 }
15 const n = 3;
16 const m = twice(inc , n); // 'inc' satisfies spec
17 assert(m > 4); // statically verified

Listing 3: The higher-order function twice restricts its func-
tion argument f with a maximum precondition and a min-
imum postcondition. The function inc has its body as im-
plicit postcondition and therefore satisfies this spec.

Listing 2 shows a JavaScript function that computes the sum of
the first n natural numbers with a while loop. The loop requires
annotated invariants for mutable variables including their types
and bounds4. Without these loop invariants, the state of i and s

would be unknown in line 13 except for the fact that i < n is false.
However, when combined with the loop invariants, the equality
i == n can be inferred after the loop and thereby the postcondi-
tion in line 3 can be verified. esverify internally uses standard SMT
theorems for integer arithmetic to establish that the invariants are
maintained for each iteration of the loop.

There is extensive prior work on automatically inferring loop in-
variants [Furia andMeyer 2010]. Recent research suggest that auto-
matic inference can also be extended to program invariants [Ernst
et al. 2001] and specifications [Henkel and Diwan 2003]. However,
this topic is orthogonal to the program verification approach pre-
sented in this paper.

2.4 Higher-order Functions
In order to support function values as arguments and results, es-
verify introduces a spec construct in pre-, postconditions and as-
sertions. Listing 3 illustrates this syntax in lines 8–10 of the higher-
order twice function. The argument f needs to be a function that
satisfies the given constraints, and therefore the call twice(inc,n)
in line 17 requires esverify to compare the pre- and postconditions
of incwith pre- and postconditions in lines 8–10. It is important to
note that esverify implicitly strengthens the stated postcondition
of inc by inlining its function body x + 1. Recursive functions are
only inlined by one level, so these need to be explicitly annotated
with adequate pre- and postconditions for verification purposes,
similarly to loop invariants.

4Here, Number.isInteger(i) ensures that i is an actual integer, while
typeof(i) === 'number' is also true for floating point numbers.

1 function f (a) {
2 requires(a instanceof Array );
3 requires(a.every(e => e > 3));
4 requires(a.length >= 2);
5 assert(a[0] > 2); // holds
6 assert(a[1] > 4); // fails as a[1] might be 4
7 assert(a[2] > 1); // a may have only 2 elements
8 }

Listing 4: esverify includes basic support for immutable ar-
rays. The elements of an array can be described with every.

2.5 Arrays and Objects
In addition to floating point numbers and integers, esverify also
supports other standard JavaScript values such as boolean values,
strings, functions, arrays and objects. However, esverify restricts
how objects and arrays can be used. Specifically, mutation of ar-
rays and objects is not currently supported and objects have to be
either immutable dictionaries that map string keys to values or in-
stances of user-defined classes with a fixed set of fields without
inheritance.

The elements of an array can be described with a quantified
proposition, corresponding to the standard array method every.
This is illustrated in Listing 4.

Despite these restrictions, it is possible to express complex re-
cursive data structures. For example, Listing 5 shows a user-defined
linked list class that is parameterized by a predicate. Here, the each
field is actually a function that returns true for each element in the
linked list. To simplify reasoning, the pseudo call pure() in the post-
condition ensures the absence of side effects. Mapping over the el-
ements of the list with a function f requires that f’ can be invoked
with elements that satisfy this.each and that return values of f
satisfy the new predicate newEach. This demonstrates how generic
data structures can be used to verify correctness in a similar way
to parameterized types. It is important to note that function calls
in an assertion context are uninterpreted, so the call newEach(y) in
line 19 only refers to the function return value but does not actually
invoke the function.

2.6 Dynamic Programming Idioms
JavaScript programs often include functions that have polymor-
phic calling conventions. A common example is the jQuery library
which provides a function “$” whose behavior varies greatly de-
pending on the arguments: given a function argument, the func-
tion is scheduled for deferred execution, while other argument
types select and return portions of the current webpage.

Even standard JavaScript objects use dynamic programming id-
ioms to provide a more convenient programming interface. For ex-
ample, the latest edition of the ECMAScript standard [ECMA-262
2017] includes Promises [Liskov and Shrira 1988] and specifies a
polymorphic Promise.resolve() function. This function behaves
differently depending on whether it is called with a promise, an ar-
bitrary non-promise object with a method called "then", or a non-
promise object without such a method. esverify can accurately ex-
press these kinds of specifications in pre- and postconditions as
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1 class List {
2 constructor (head , tail , each) {
3 this.head = head; this.tail = tail; this.each = each;
4 }
5 invariant () {
6 // this.each is a predicate that is true for this element and the rest of the list
7 return spec(this.each , x => true , (x, y) => pure() && typeof(y) === 'boolean ') &&
8 (true && this.each)(this.head) && // same as 'this.each(this.head)' but without binding 'this'
9 (this.tail === null || (this.tail instanceof List && this.each === this.tail.each ));
10 }
11 }
12 function map (f, lst , newEach) {
13 // newEach needs to be a predicate
14 // (a pure function without precondition that returns a boolean)
15 requires(spec(newEach , x => true , (x, y) => pure() && typeof(y) === 'boolean '));
16 // the current predicate 'this.each' must satisfy the precondition of 'f'
17 // and the return value of 'f' needs to satisfy the new predicate 'newEach '
18 requires(lst === null || spec(f, x => (true && lst.each)(x), (x, y) => pure() && newEach(y)));
19 requires(lst === null || lst instanceof List);
20 ensures(res => res === null || (res instanceof List && res.each === newEach ));
21 ensures(pure ()); // necessary as recursive calls could otherwise invalidate the class invariant
22 return lst === null ? null : new List(f(lst.head), map(f, lst.tail , newEach), newEach );
23 }

Listing 5: Custom linked list class with a field eachwhich is a function that is true for all elements. Mapping over the list results
in a new list whose elements satisfy a new predicate analogous to a map function in a parametrized type system.

1 class Promise {
2 constructor (value) { this.value = value; }
3 }
4 function resolve (fulfill) {
5 // "fulfill" is promise , then -able or
6 // a value without a "then" property
7 requires(fulfill instanceof Promise ||
8 spec(fulfill.then , () => true ,
9 () => true) ||
10 !('then' in fulfill ));
11 ensures(res => res instanceof Promise );
12 if (fulfill instanceof Promise) {
13 return fulfill;
14 } else if ('then' in fulfill) {
15 return new Promise(fulfill.then ());
16 } else {
17 return new Promise(fulfill );
18 }
19 }

Listing 6: The standard Promise.resolve() function in
JavaScript has complex polymorphic behavior. This simpli-
fied mock definition illustrates how esverify enables such
dynamic programming idioms.

shown in Listing 6, while standard type systems need to resort to
code changes, such as sum types and injections.

2.7 Complex Programs: MergeSort
We also demonstrate non-trivial programs such as MergeSort and
verify their functional correctness5. The implementation is purely
functional and uses a linked list data type that is defined as a class.
Interestingly, about 48 out of a total 99 lines are verification an-
notations, including invariants, pre- and postconditions and the
predicate function isSorted. isSorted is primarily used in speci-
fications, but the implementations of merge and sort also include
calls to it. These calls are used as triggers, hints to the underlying
SMT solver that do not contribute to the result. In other verified
languages such as Dafny [Leino 2013], isSortedwould correspond
to a “ghost function”, but esverify does not currently differentiate
between verification-only and regular implementation functions.

2.8 JavaScript as Theorem Prover
A simple induction proof over natural numbers can be written as
a while loop as previously shown in Listing 2. This idea can be
generalized by using the spec construct to reify propositions.

In particular, the postcondition of a function need not only de-
scribe its return value; it can also state a proposition such that
a value that satisfies the function specification acts as proof of
this proposition – analogous to the Curry-Howard isomorphism.
Such a “function” can then be supplied as argument to higher-
order functions to build up longer proofs. For an example, Listing
7 includes a proof written in JavaScript showing that any locally
increasing integer-ranged function is globally increasing. This ex-
ample was previously used to illustrate refinement reflection in
LiquidHaskell [Vazou et al. 2018].

5The source code of aMergeSort algorithm in esverify is available at https://esverify.
org/try#msort.

https://esverify.org/try#msort
https://esverify.org/try#msort
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1 function proof_f_mono (f, proof_f_inc , n, m) {
2 // f is a function from non -negative int to int
3 requires(spec(f,
4 (x) => Number.isInteger(x) && x >= 0,
5 (x, y) => Number.isInteger(y) && pure ()));
6 // proof_f_inc states that f is increasing
7 requires(spec(proof_f_inc ,
8 x => Number.isInteger(x) && x >= 0,
9 x => f(x) <= f(x + 1) && pure ()));
10 requires(Number.isInteger(n) && n >= 0);
11 requires(Number.isInteger(m) && m >= 0);
12 requires(n < m);
13 // show that f is increasing for arbitrary n,m
14 ensures(f(n) <= f(m));
15 ensures(pure ()); // no side effects
16 proof_f_inc(n); // instantiate proof for n
17 if (n + 1 < m) {
18 // invoke induction hypothesis (I.H.)
19 proof_f_mono(f, proof_f_inc , n + 1, m);
20 }
21 }
22 function fib (n) {
23 requires(Number.isInteger(n) && n >= 0);
24 ensures(res => Number.isInteger(res));
25 ensures(pure ());
26 if (n <= 1) {
27 return 1;
28 } else {
29 return fib(n - 1) + fib(n - 2);
30 }
31 }
32 // A proof that fib is increasing
33 function proof_fib_inc (n) {
34 requires(Number.isInteger(n) && n >= 0);
35 ensures(fib(n) <= fib(n + 1));
36 ensures(pure ());
37 fib(n); // unfolds fib at n
38 fib(n + 1);
39 if (n > 0) {
40 fib(n - 1);
41 proof_fib_inc(n - 1); // I.H.
42 }
43 if (n > 1) {
44 fib(n - 2);
45 proof_fib_inc(n - 2); // I.H.
46 }
47 }
48 function proof_fib_mono (n, m) {
49 requires(Number.isInteger(n) && n >= 0);
50 requires(Number.isInteger(m) && m >= 0);
51 requires(n < m);
52 ensures(fib(n) <= fib(m));
53 ensures(pure ());
54 proof_f_mono(fib , proof_fib_inc , n, m);
55 }

Listing 7: A proof about monotonous integer functions in
JavaScript and an instantiation for fib. This example was
previously used to illustrate refinement reflection in the
statically-typed LiquidHaskell system [Vazou et al. 2018].
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SMT Solving

Dynamic Testing

Figure 1: The basic verificationworkflow: esverify generates
and statically checks verification conditions by SMT solving.

3 IMPLEMENTATION
The esverify prototype implementation6 is available online. Be-
cause the implementation itself is written in TypeScript, a dialect
of JavaScript, it can be used in a browser. Indeed, there is a browser-
based editorwith esverify checking7. Alternative integrations such
as extensions for Vim and Emacs also exist.

The basic verification process and overall design of esverify is
depicted in Figure 1.

The first step of the process involves parsing the source code
and restricting the input language to a subset of JavaScript sup-
ported by esverify. Some of these restrictions may be lifted in fu-
ture versions of esverify, such as support for regular expressions
or functions with a variable number of arguments. However, other
JavaScript features would involve immense complexity for accu-
rate verification due to their dynamic character and their interac-
tions with the rest of the program, such as metaprogramming with
eval or new Function(). Additionally, esverify does not support fea-
tures that have been deprecated in newer versions of strict mode
JavaScript such as arguments.callee, this outside of functions or
the with statement. The parser also differentiates between expres-
sions and assertions. For example, spec can only used in assertions
while function definitions can only appear in the actual program
implementation.

During the second step, scope analysis determines variable
scopes and rejects programs with scoping errors and references
to unsupported global objects. In addition to user-provided defini-
tions, it includes a whitelist of globals supported by esverify, such
as Array, Math and console. The analysis also takes mutability into
account. For example, mutable variables cannot be referenced in

6Implementation Source Code: https://github.com/levjj/esverify/
7Online live demo of esverify: https://esverify.org/try

https://github.com/levjj/esverify/
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∀a∀b .
typeof(a) = “number”

∧ typeof(b) = “number”
∧ (a > b) ⇒ result=a
∧ ¬(a > b) ⇒ result=a

=⇒ result ≥ a

Figure 2: A simplified verification condition for the postcon-
dition of the max function in line 4 of Listing 1.

(∀a,b .max(a,b) ≥ a)
=⇒ max(3, 5) > 0

(∀a,b .max(a,b) ≥ a)
∧ max(3, 5) ≥ 3
=⇒ max(3, 5) > 0

Figure 3: The proposition on the left has a universal quan-
tifier. On the right, this quantifier is instantiated with con-
crete values of a and b, yielding an augmented proposition
that can be verified with simple arithmetic.

class invariants, and the old(x) syntax in a postcondition requires
x to be a mutable variable.

The main verification step is implemented as a traversal of the
source program that generates verification conditions and main-
tains a verification context. Most notably, the verification context
includes a logical proposition that acts as precondition and a set of
variables with unknown values. Generated verification conditions
combine this context with an assertion, such as a function postcon-
dition. Figure 2 illustrates this process for a simple example. The
verification condition checks whether the preconditions and the
translated function body imply the postcondition. Section 4.4 de-
scribes the verification rules in more detail.

The verification condition is then transformed with a quan-
tifier instantiation procedure. As illustrated by Figure 3, quan-
tified propositions in verification conditions need to be instanti-
ated with concrete values in order to determine satisfiability of
the formula. Quantifiers are instantiated based on matching trig-
gers and remaining quantifiers are then erased from the proposi-
tion8. The resulting quantifier-free proposition can be checked by
SMT solving, ensuring that the verification process remains pred-
icable. However, this approach to quantifier instantiation requires
the programmer to provide explicit triggers as function calls. Alter-
natively, the trigger-based quantifier instantiation can be skipped
and the proposition passed directly to the SMT solver, which inter-
nally performs instantiations based on heuristics.

The final step of the verification process involves checking the
verification condition with an SMT solver such as z3 [de Moura
and Bjørner 2008] or CVC4 [Barrett and Berezin 2004; Barrett et al.
2011]. If the solver cannot find a solution for the negated verifi-
cation condition, i.e. if the solver cannot refute the proposition,
verification succeeded. Otherwise, the returned model includes an
assignment of free variables that acts as a counterexample.

Given a counterexample and a synthesized unit test with holes,
the verification condition can be dynamically tested. This in-
volves dynamic checking of assertions and serves two purposes.
On the one hand, the test might not be able to reproduce an error

8The formal definition of the quantifier instantiation algorithm is given in Section 4.2.

φ ∈ Propositions ::= τ | ¬φ | φ ∧ φ | φ ∨ φ | pre1(⊗,τ ) |
pre2(⊕,τ ,τ ) | pre(τ ,τ ) | post(τ ,τ ) | ∀x .φ

τ ∈ Terms ::= v | x | ⊗ τ | τ ⊕ τ | τ (τ )
⊗ ∈ UnaryOperators ::= ¬ | isInt | isBool | isFunc
⊕ ∈ BinaryOperators ::= + | − | × | / | ∧ | ∨ | = | <
v ∈ Values ::= true | false | n | ⟨f (x) req R ens S {e},σ ⟩
σ ∈ Environments ::= ∅ | σ [x 7→ v]
n ∈ N f ,x ,y, z ∈ Variables

Figure 4: Syntax of logical propositions used in the verifier.

or assertion violation. This indicates that the static analysis did
not accurately model the actual program behavior due to a loop in-
variant or assertion not being sufficiently strong. In this case, the
programmer can use the variable assignment in the counterexam-
ple to better understand the shortcomings of the analysis and im-
prove those annotations. On the other hand, the test might lead to
an error or assertion violation. In this case, the programmer is pre-
sented with both a verification error message as well as a concrete
witness that assists in the debugging process similar to existing
test generators [Tillmann and de Halleux 2008].

4 FORMALISM
In order to reason about esverify, this section introduces a formal
development of λS , a JavaScript-inspired, statically verified but dy-
namically typed language, and shows that its verification is sound.

The verification rules of λS use verification conditionswhose va-
lidity is checked with a custom decision procedure, so this section
first formally defines logical propositions and axiomatizes their va-
lidity and then describes the decision procedure including quanti-
fier instantiation. Finally, the syntax and semantics of λS are de-
fined and its verification rules are shown to be sound.

The definitions, axioms and theorems in this section are also
formalized in the Lean theorem prover and available online9.

4.1 Logical Foundation
Figure 4 formally defines the syntax of propositions, terms, values
and environments. Propositions φ can use terms, connectives ¬, ∧
and∨, symbolspre1,pre2,pre ,post and universal quantifiers. Here,
terms τ are either values, variables, unary or binary operations or
uninterpreted function calls. Finally, values v include boolean and
integer constants as well as closures which are opaque values that
will be explained in Section 4.3.

Instead of defining validity of propositions in terms of an algo-
rithm such as SMT solving, this formal development uses an ax-
iomatization of the validity judgement ⊢ φ.

Standard axioms for logical connectives and quantifiers are omit-
ted here for brevity but can be found Lean proof. Most notewor-
thy, axioms about unary and binary operators that are specified in
terms of a partial function δ , e.g. δ (+, 2, 3) = 5.

⊢ φAxiom 1. Iff δ (⊗,vx ) = v then ⊢ v = ⊗vx .
9Formal definitions and proofs in Lean: https://github.com/levjj/esverify-theory/

https://github.com/levjj/esverify-theory/
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Axiom 2. Iff δ (⊕,vx ,vy ) = v then ⊢ v = vx ⊕ vy .

The propositions pre1(⊗,vx ) and pre2(⊗,vx ,vy ) can be used to
reason about the domain of operators.

Axiom 3. If ⊢ pre1(⊗,vx ) then (⊗,vx ) ∈ dom(δ ).
Axiom 4. If ⊢ pre2(⊕,vx ,vy ) then (⊕,vx ,vy ) ∈ dom(δ ).

Similarly, the constructs pre(f ,x) and post(f ,x) in propositions
denote the pre- and postcondition of a function f when applied to
a given argument x . However, in contrast to pre1 and pre2, the
logical foundations do not contain axioms for pre and post . The
interpretation of pre and post is instead determined by their use in
the generated verification condition.

A valid proposition is not necessarily closed. In fact, free vari-
ables occurring in a proposition are assumed to be implicitly uni-
versally quantified.

Axiom 5. If x is free in φ and ⊢ φ then ⊢ ∀x . φ.
It is important to note that the validity judgement may not be

decidable for all propositions due to the use of quantifiers, so in ad-
dition to this (undecidable) validity judgement, we also introduce
a notion of satisfiability by an SMT solver.

Definition 1 (Satisfiability). Sat(φ) denotes that the SMT solver
found a model that satisfies φ. Sat(φ)
Theorem 1. If φ is quantifier-free, then Sat(φ) terminates and
Sat(φ) iff σ |= φ for some model σ .

Proof. SMT solving is not decidable for arbitrary propositions
but the QF-UFLIA fragment of quantifier-free formulas with equal-
ity, linear integer arithmetic and uninterpreted function is known
to be decidable [Christ et al. 2012; Nelson and Oppen 1979]. □

4.2 Quantifier Instantiation Algorithm and
Decision Procedure

As described above, verification of λS involves checking the va-
lidity of verification conditions that include quantifiers. Quantifier
instantiation in SMT solvers is an active research topic [Ge and
de Moura 2009; Reynolds et al. 2013] and often requires heuris-
tics or explicit matching triggers. However, heuristics can cause
unpredictable results and trigger-based instantiation might lead to
infinite matching loops. This section describes a bounded quanti-
fier instantiation algorithm that avoids matching loops and brittle
heuristics, thus enabling a predictable decision procedure for veri-
fication conditions.

P ∈ VerificationConditions ::=
τ | ¬P | P ∧ P | P ∨ P | pre1(⊗,τ ) | pre2(⊕,τ ,τ ) |
pre(τ ,τ ) | post(τ ,τ ) | call(τ ) | ∀x .{call(x)} ⇒ P | ∃x .P

The syntax of verification conditions P used in verification rules
is similar to the syntax for propositions but universal quantifiers
in verification conditions (VCs) have explicit matching patterns to
indicate that instantiation requires a trigger. Accordingly, the con-
struct call(x) is introduced to act as an instantiation trigger that
does not otherwise affect validity of propositions, i.e. call(x) can
always assumed to be true. Intuitively, call(x) represents a function
call or an asserted function specification while ∀x .{call(x)} ⇒ P

corresponds to a function definition or an assumed function speci-
fication. For the trigger call(x), x denotes the argument of the call;
the callee is omitted as triggers are matched irrespective of their
callees by the instantiation algorithm.

The complete decision procedure for VCs including quantifier
instantiation is shown in Figure 5.

To make the definition more concise, we first define contexts
P+[◦] and P−[◦] for a VC with positive and negative polarity re-
garding negation. Using this definition, the set of call triggers in
negative positions can be defined as the set of triggers for which
there exists a context with negative polarity.

The procedure li f t+ matches universal quantifiers in positive
and existential quantifiers in negative positions. In both cases, an
equivalent VC without the quantifier can be obtained by renaming
the quantified variable to a fresh variable that is implicitly univer-
sally quantified. It is important to note that the matching pattern
call(y) of a universal quantifier now becomes a part of an implica-
tion thereby available to instantiate further quantifiers. The lifting
is repeated until no more such quantifiers can be found.

The procedure instantiateOnce− performs one round of trigger-
based instantiation such that each universal quantifier with nega-
tive polarity is instantiated with all available triggers in negative
position. All such instantiations are conjoined with the original
quantifier.

Both lifting and instantiation are repeated for multiple itera-
tions by the recursive instantiate− procedure. As a final step, erase−
removes all remaining triggers and quantifiers in negative posi-
tions.

The overall decision procedure ⟨P⟩ performs n rounds of instan-
tiations where n is the maximum level of quantifier nesting. The
original VC P is considered valid if SMT solving cannot refute the
resulting proposition.

VCs P can syntactically include both existential and universal
quantifiers in both positive and negative positions. However, we
can show that VCs generated by the verifier have existential quan-
tifiers only in negative positions.

Theorem 2 (Decision Procedure Termination). If P does not con-
tain existential quantifiers in negative positions, the decision pro-
cedure ⟨P⟩ terminates.

Proof. The li f t+ function eliminates a quantifier during each
recursive call and therefore terminates when there are no more
matching quantifiers in the formula. instantiateOnce− and erase−
are non-recursive and trivially terminate. Since themaximum level
of nesting is finite, ⟨P⟩ performs only a finite number of instanti-
ations. With existential quantifiers only in negative positions, the
erased and lifted result is quantifier-free, so according to Lemma
1, the final SMT solving step also terminates. □

It is now possible to compare the axiomatized validity judge-
ment for propositions ⊢ φ with the decision procedure for verifi-
cation conditions ⟨P⟩ by translating the VC P to a proposition φ
without triggers or matching patterns.

Definition 2 (Proposition Translation). prop(P) denotes a propo-
sition such that triggers and matching patterns in P are removed
and existential quantifiers ∃x . P translated to ¬∀x . ¬prop(P).
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P+[◦] ::= ◦ | ¬P−[◦] | P+[◦] ∧ P | P ∧ P+[◦] | P+[◦] ∨ P | P ∨ P+[◦] calls+ (P) def
==

{
call(τ ) | P = P+[call(τ )]

}
P−[◦] ::= ¬P+[◦] | P−[◦] ∧ P | P ∧ P−[◦] | P−[◦] ∨ P | P ∨ P−[◦] calls− (P) def

== { call(τ ) | P = P−[call(τ )] }

li f t+ (P) def
== match P with

P+[∀x .{call(x)} ⇒ P ′] → li f t+
(
P+[call(y) ⇒ P ′[x 7→ y]]

)
(y fresh)

P−[∃x .P ′] → li f t+ (P−[P ′[x 7→ y]]) (y fresh)
otherwise → P

instantiateOnce− (P) def
== P

P−
[
(∀x .{call(x)} ⇒ P ′)

]
7→ P−

(∀x .{call(x)} ⇒ P ′) ∧
∧

call (τ )∈calls−(P )
P ′[x 7→ τ ]




erase− (P) def
== P

[
P−

[
(∀x .{call(x)} ⇒ P ′′)

]
7→ P−

[
true

]
, P+

[
call(τ )

]
7→ P+

[
true

]
, P−

[
call(τ )

]
7→ P−

[
true

] ] ]
instantiate− (P ,n) def

== if n = 0 then erase−(li f t+(P)) else instantiate−(instantiateOnce−
(
li f t+(P)

)
,n − 1)

⟨P⟩ def
== let n = maximum level of quantifier nesting of P in ¬Sat (¬instantiate− (P ,n)) ⟨P⟩

Figure 5: The decision procedure lifts, instantiates and finally eliminates quantifiers. The number of iterations is bounded by
the maximum level of quantifier nesting.

e ∈ Expressions ::=
let x = true in e | let x = false in e | let x = n in e |
let f (x) req R ens S = e in e | let y = ⊗x in e |
let z = x ⊕ y in e | let y = f (x) in e | if (x) e else e | return x

R, S ∈ Specs ::= τ | ¬R | R ∧ R | R ∨ R | spec τ (x) req R ens S
κ ∈ Stacks ::= (σ , e) | κ · (σ , let y = f (x) in e)

Figure 6: Syntax of λS programs. Function definitions have
pre- and postconditions written as simple logical proposi-
tions with the spec syntax for higher-order functions.

Theorem 3 (Quantifier Instantiation Soundness). If P has no exis-
tential quantifiers in negative positions, then ⟨P⟩ implies ⊢ prop(P).

Proof. By Axiom 5, list+ preserves equisatisfiability. Note that
any conjuncts inserted by instantiateOnce− could also be obtained
via classical (not trigger-based) instantiation. Furthermore, since
erase− only removes quantifiers in negative positions and (incon-
sequential) triggers, the resulting propositions are implied by the
original non-erased VC. Finally, with existential quantifiers only
in negative positions, the erased and lifted result is quantifier-free.
Therefore, Axiom 1 can be used to show that a valid VC accord-
ing to the decision procedure is also valid without trigger-based
instantiation10. □

4.3 Syntax and Operational Semantics of λS

Figure 6 defines the syntax of λS . Programs are assumed to be in A-
normal form [Flanagan et al. 1993] and the dynamic semantics uses
environments and stack configurations. This formalism avoids sub-
stitution in expressions and assertions in order to simplify subse-
quent proofs. Here, a function definition let f (x) req R ens S =
e1 in e2 is annotated with a precondition R and a postcondition
10A complete proof is available at: https://github.com/levjj/esverify-theory/

S . These specifications can include terms τ such as constants, pro-
gram variables, and uninterpreted function application τ (τ ) as well
as logical connectives, and a special syntax “spec τ (x) req R ens S”
that describes the pre- and postcondition of a function value.

The operational semantics of λS is specified by a small-step eval-
uation relation over stack configurations κ, as shown in Figure 7.
Most noteworthily, the callee function name is added to the envi-
ronment at each call to enable recursion, and function pre- and
postconditions are not checked or enforced during evaluation.

The evaluation of a stack configuration terminates either by get-
ting stuck or by reaching a successful completion configuration.
Definition 3 (Evaluation Finished). A stack κ has terminated suc-
cessfully, abbreviated with terminated(κ), if there exists σ and x
such that κ = (σ , return x) and x ∈ σ .

4.4 Program Verification
The verification rules of λS are inductively defined in terms of a
verification judgement P ⊢ e : Q as shown in Figure 8. Given
a known precondition P and an expression e , a verification rule
checks potential verification conditions and generates a postcon-
dition Q . This postcondition contains a hole • for the evaluation
result of e . Since λS is purely functional, P still holds after evalu-
ating e , so we call Q the marginal postcondition and P ∧ Q[•] the
strongest postcondition.

As an example, a unary operation such as let y = ⊗x in e is
verifiedwith the rule vc-unop. It requires x to be a variable in scope,
i.e. a variable that is free in the precondition P . To avoid name
clashes, the result y should not be free. Additionally, the VC ⟨P ⇒
pre(⊗,x)⟩ needs to be valid for all assignments of free variables
(such as x ). This check ensures that the value of x is in the domain
of the operator ⊗. The rules vc-binop, vc-if, etc. follow analogously.

For function applications f (x), an additional call(x) trigger is
assumed to instantiate quantified formulas that correspond to the
function definition or specification of the callee.

https://github.com/levjj/esverify-theory/
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κ ↪→ κ
(σ , let x = v in e) ↪→ (σ [x 7→ v], e) where v ∈ {true, false,n} [e-val]

(σ , let f (x) req R ens S = e1 in e2) ↪→ (σ [f 7→ ⟨f (x) req R ens S {e1},σ ⟩], e2) [e-closure]

(σ , let y = ⊗x in e) ↪→ (σ [y 7→ v], e) where v = δ (⊗,σ (x)) [e-unop]

(σ , let z = x ⊕ y in e) ↪→ (σ [z 7→ v], e) where v = δ (⊕,σ (x),σ (y)) [e-binop]

(σ , let z = f (y) in e) ↪→ (σf [д 7→ σ (f ),x 7→ σ (y)], ef ) · (σ , let z = f (y) in e) [e-call]

where σ (f ) = ⟨д(x) req R ens S {ef },σf ⟩
(σ , return z) · (σ2, let y = f (x) in e2) ↪→ (σ2[y 7→ σ (z)], e2) [e-return]

(σ , if (x) e1 else e2) ↪→ (σ , e1) if σ (x) = true [e-if-true]

(σ , if (x) e1 else e2) ↪→ (σ , e2) if σ (x) = false [e-if-false]

κ · (σ , let y = f (x) in e) ↪→ κ ′ · (σ , let y = f (x) in e) if κ ↪→ κ ′ [e-context]

Figure 7: Operational semantics

Q[•] ∈ PropositionContexts ::= P | η[•] | ¬Q[•] | Q[•] ∧Q[•] | Q[•] ∨Q[•] | pre1(⊗,η[•]) | pre2(⊕,η[•],η[•]) |
pre(η[•],η[•]) | post(η[•],η[•]) | call(η[•]) | ∀x .{call(x)} ⇒ Q[•] | ∃x . Q[•]

η[•] ∈ TermContexts ::= • | τ | ⊗ η[•] | η[•] ⊕ η[•] | η[•](η[•]) P ⊢ e : Q

x < FV (P) v ∈ {true, false,n} P ∧ x = v ⊢ e : Q
vc-val

P ⊢ let x = v in e : ∃x . x = v ∧Q

x ∈ FV (P) y < FV (P) ⟨P ⇒ pre(⊗,x)⟩ P ∧ y = ⊗x ⊢ e : Q
vc-unop

P ⊢ let y = ⊗x in e : ∃y. y = ⊗x ∧Q

x ∈ FV (P) y ∈ FV (P) z < FV (P) ⟨P ⇒ pre(⊕,x ,y)⟩ P ∧ z = x ⊕ y ⊢ e : Q
vc-binop

P ⊢ let z = x ⊕ y in e : ∃z. z = x ⊕ y ∧Q

f < FV (P) x < FV (P) f , x x ∈ FV (R) FV (R) ⊆ FV (P) ∪ { f ,x} FV (S) ⊆ FV (P) ∪ { f ,x}
P ∧ spec f (x) req R ens S ∧ R ⊢ e1 : Q1 ⟨P ∧ spec f (x) req R ens S ∧ R ∧Q1[f (x)] ⇒ S⟩

P ∧ spec f (x) req R ens (Q1[f (x)] ∧ S) ⊢ e2 : Q2
vc-func

P ⊢ let f (x) req R ens S = e1 in e2 : ∃f . spec f (x) req R ens (Q1[f (x)] ∧ S) ∧Q2

f ∈ FV (P) x ∈ FV (P) y < FV (P) ⟨P ∧ call(x) ⇒ isFunc(f ) ∧ pre(f ,x)⟩ P ∧ call(x) ∧ post(x) ∧ y = f (x) ⊢ e : Q
vc-app

P ⊢ let y = f (x) in e : ∃y. call(x) ∧ post(f ,x) ∧ y = f (x) ∧Q

x ∈ FV (P) ⟨P ⇒ isBool(f )⟩ P ∧ x ⊢ e1 : Q1 P ∧ ¬x ⊢ e2 : Q2
vc-ite

P ⊢ if (x) e1 else e2 : (x ⇒ Q1) ∧ (¬x ⇒ Q2)
x ∈ FV (P)

vc-return
P ⊢ return x : x = •

Figure 8: The judgement P ⊢ e : Q verifies the expression e given a known context P .

Themost complex rule concerns the verification of function def-
initions, such as let f (x) req R ens S = e1 in e2. Here, the annotated
precondition R, the specification of f and the marginal postcondi-
tion Q1[f (x)] together have to imply the annotated postcondition
S . Any recursive calls of f appearing in its function body will in-
stantiate its (non-recursive) specification, while subsequent calls
of f in e2 will use a postcondition that is strengthened by the gen-
erated marginal postcondition. This corresponds to expanding or
inlining the function definition by one level at each non-recursive
callsite.

The special syntax spec τ (x) req R ens S , as used in verifica-
tion rules, user-provided pre- and postconditions, is a notation that
desugars to a universal quantifier when appearing in a verification
condition.

Notation 1 (Function Specifications). spec τ (x) req R ens S ≡
isFunc(τ ) ∧ ∀x .{call(x)} ⇒ ((R ⇒ pre(τ ,x)) ∧ (post(τ ,x) ⇒ S))

That is, if a function call instantiates this quantifier, the precon-
dition R of the spec satisfies the precondition of f and the post-
condition S of the spec is implied by the postcondition of f . For a
concrete function call, this means that R needs to be asserted by
the calling context and S can be assumed at the callsite.

4.5 Soundness
Based on the decision procedure and the verification rules described
in the previous sections, it is possible to show that verified pro-
grams evaluate to completion without getting stuck. While anno-
tated assertions are not directly enforced by the operational seman-
tics, the preconditions of operators have to be satisfied and can
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be arbitrarily complex. Therefore, this soundness property also en-
sures that annotated assertions, such as postconditions, hold dur-
ing evaluation for concrete values of free variables.

First, it is important to note that quantifiers in generated VCs
only appear in certain positions.

Lemma 1. If P is a proposition with existential quantifiers only
in positive positions, then each VC used in the derivation tree of
P ⊢ e : Q has existential quantifiers only in negative positions.

Proof. All VCs in the verification rules shown in Figures 8 are
implications of the form ⟨P ′′ ⇒ Q ′′⟩. In each of these implica-
tions, there are no existential quantifiers in Q ′′, as user-supplied
postconditions S have no existential quantifiers. Additionally, all
propositions P ′′ on the left-hand side have existential quantifiers
only in positive positions, since existential quantifiers in marginal
postconditions are always in positive positions. □

From Lemma 1 and Theorem 2, it follows that verification al-
ways terminates, ensuring a predictable verification process.

As mentioned in section 4.1, the axiomatization of logical propo-
sitions does not include evaluation and treats terms τ (τ ) as uninter-
preted symbols rather than function calls. However, for a proof of
verification soundness it is necessary to establish equalities about
function application for a given closure and argument value.

Axiom 6. If (σ [f 7→ ⟨f (x) req R ens S {e},σ ⟩,x 7→ vx ], e) −→∗

(σ ′,y) and σ ′(y) = v then ⊢ ⟨f (x) req R ens S {e},σ ⟩(vx ) = v .

Similarly, axioms aboutpre(f ,x) andpost(f ,x) can be added for
concrete values of f and x .

Axiom 7. Iff σ [f 7→ ⟨f (x) req R ens S {e},σ ⟩,x 7→ vx ] |= R then
⊢ pre(⟨f (x) req R ens S {e},σ ⟩,vx ).

Axiom 8. If ⊢ σ : Q1 andQ1∧spec f (x) req R ens S∧R ⊢ e : Q2[•]
and σ [f 7→ ⟨f (x) req R ens S {e},σ ⟩,x 7→ vx ] |= Q2[f (x)]∧S then
⊢ post(⟨f (x) req R ens S {e},σ ⟩,vx ).

Axiom 9. If ⊢ σ : Q1 and Q1 ∧ spec f (x) req R ens S ∧ R ⊢
e : Q2[•] and ⊢ post(⟨f (x) req R ens S {e},σ ⟩,vx ) then σ [f 7→
⟨f (x) req R ens S {e},σ ⟩,x 7→ vx ] |= Q2[f (x)] ∧ S

Based on these axioms, definitions and verification rules, it can
now be shown that verifiable expressions evaluate to completion
without getting stuck, i.e. all reachable configurations either termi-
nate normally or can be further evaluated.

Theorem 4 (Verification Safety). If true ⊢ e : Q and (∅, e) ↪→∗ κ
then terminated(κ) or κ ↪→ κ ′ for some κ ′.

Proof. Due to the complex quantifier instantiation of the deci-
sion procedure, we first show verification safety for a similar but
undecidable verification judgement without quantifier instantia-
tion.With theorem 3, soundness of this verification judgement also
implies soundness with trigger-based quantifier instantiation. The
verification safety proof for this alternate judgement uses a stan-
dard progress/preservation proof strategy, where the notion of ver-
ifiability is extended to stack configurations. Here, a given runtime
stack is considered verifiable if, at each stack frame, the expression
is verifiable with the translation of σ as precondition. A complete
proof is available at: https://github.com/levjj/esverify-theory/. □

c ∈ ClassNames fd ∈ FieldNames this ∈ Variables
v ∈ Values ::= ... | C(v)
e ∈ Expressions ::= ... | let y = new C(x) in e | let y = x . fd in e

τ ∈ Terms ::= ... | τ . fd | C(τ )
P ∈ VCs ::= ... | fd in τ | τ instanceof C |

access(τ ) | ∀x .{access(x)} ⇒ P

D ∈ ClassDefs ::= class C(fd) inv S

x ∈ FV (P) y < FV (P)
⟨P ⇒ fd in x⟩ P ∧ y = x . fd ⊢ e : Q
P ⊢ let y = x . fd in e : ∃y. y = x . fd ∧Q

x ∈ FV (P) y < FV (P) class C(fd) inv S ∈ D
⟨P ∧ this = C(x) ∧ this instanceof C ⇒ S⟩
P ∧ y = C(x) ∧ y instanceof C ⊢ e : Q

P ⊢ let y = new C(x) in e : ∃y. y = C(x) ∧ y instanceof C ∧Q

Figure 9: Extending the verification rules of λS with simple
immutable classes with class invariants.

4.6 Extensions
The core language λS includes higher-order functions but does not
address other language features supported by esverify, such as im-
perative programs and complex recursive data types.

Extending λS for imperative programs would entail syntax, se-
mantics and verification rules for allocating, mutating and refer-
encing values stored in the heap. Most noteworthy, loops and re-
cursion invalidate previous facts about heap contents and there-
fore require precise invariants. This issue can be addressed with
segmentation logic and dynamic frames [Smans et al. 2009].

Additionally, λS can be extended to support “classes” as shown
in Figure 9. These classes are immutable andmore akin to recursive
data types as they do not support inheritance. Each class definition
consists of an ordered sequence of fields and an invariant S that is
specified in terms of a free variable this . The class invariant can
be used to express complex recursive data structures such as the
parameterized linked list shown in Section 2.5.

The class invariant has to be instantiated for concrete instances
of the class, so a trigger access(x) is inserted into verification con-
ditions at each field access, similarly to call(x) trigger for function
calls. However, unlike function definitions, class definitions D are
global. Therefore, we augment verification conditions such that for
each class C(fd) inv S ∈ D the following quantifier is assumed:

∀x .{access(x)} ⇒
(
x instanceof C ⇒

(
x has fd ∧ S[this 7→ x]

))
This quantifier is instantiated by an access(x) trigger and the

instantiated formula includes both the class invariant as well as a
description of its fields.

5 COMPARISONWITH REFINEMENT TYPES
Despite being dynamically typed, the verification rules shown in
Figure 8 resemble static typing rules. In this section, we provide a
brief comparison of this program verification approach with static
type checking.

https://github.com/levjj/esverify-theory/
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t ∈ TypedExpressions ::= ... | let f (x : T ) : T = t in t

T ∈ Types ::= { x : B | R } | x : T → T

B ∈ BaseTypes ::= Bool | Int
Γ ∈ TypeEnvironments ::= ∅ | Γ,x : T

Γ ⊢ t : T
x , f < dom(Γ) FV (Tx ) ⊆ dom(Γ) FV (T ) ⊆ dom(Γ) ∪ {x}
Γ,x : Tx , f : (x : Tx → T ) ⊢ t1 : T1 Γ,x : Tx ⊢ T1 <: T

Γ,x : Tx , f : (x : Tx → T ) ⊢ t2 : T2
t-fn

Γ ⊢ let f (x : T ) : T = t1 in t2 : T2

Γ ⊢ T <: T
B1 = B2

⟨JΓK ∧ R ⇒ S
⟩

x < dom(Γ)
st-ref

Γ ⊢ { x : B1 | R } <: { x : B2 | S }
Γ ⊢ T ′

x <: Tx Γ,x : T ′
x ⊢ T <: T ′

st-fun
Γ ⊢ (x : Tx → T ) <: (x : T ′

x → T ′)

JΓK
Jτ : T K

J∅K def
== trueJΓ,x : T K def
== JΓK ∧ Jx : T K

Jτ : {x : Bool | R}K def
== isBool(τ ) ∧ R[x 7→ τ ]Jτ : {x : Int | R}K def
== isInt(τ ) ∧ R[x 7→ τ ]Jτ : (x : Tx → T )K def
== spec τ (x) req Jx : Tx K ens Jτ (x) : T K

Figure 10: Selected typing and subtyping rules of a stati-
cally typed language λT . Functions are annotated with types
where refinements R are analogous to specifications in λS .

An comprehensive formalization of refinement and dependent
type systems and a formal proof that examines their expressive-
ness is beyond the scope of this paper. However, by describing a
translation of types to assertions and investigating concrete exam-
ples, we enable a comparison of esverifywith systems such as Liq-
uidHaskell [Vazou et al. 2014] and conjecture that it is at least as
expressive.

First, we assume a language λT similar to λS but with type an-
notations instead of pre- and postconditions. Figure 10 shows an
excerpt of such a language. Here, a type is either a dependent func-
tion type or a refined base type where refinements R are consistent
with specifications in λS .

Given such a language, the typing rule for function definitions
(t-fn) checks the function body t1 and compares its type T1 with
the annotated return type T . This return type might refer to the
function argument in order to support dependent types. However,
other free variables in refinements can break hygiene, so t-fn re-
stricts free variables in user-provided types Tx and T accordingly.

The subtyping relation is also shown in Figure 10. Most impor-
tantly, subtyping of refined base types requires checking an im-
plication between the refinements and it requires translating the
type environment Γ to a logical formula JΓK, where function types
translate to the function specifications with the spec syntax.

Intuitively, the logical implication used for refinements also ex-
tends to translated function types, so if Γ ⊢ T <: T ′ then for all
terms τ , JΓK ∧ Jτ : T K implies Jτ : T ′K.

As an example, the following λT expression is well-typed as the
return type is a subtype of the argument type:

let f (д : (x : {x : Int | x > 3} → {y : Int | y > 8})) :
(x : {x : Int | x > 4} → {y : Int | y > 7}) = д in ...

Translated into esverify, we obtain a programwith spec in pre- and
postcondition:

function f (g) {
requires( spec(g, x => x > 3, (x,y) => y > 8));
ensures(r=>spec(r, x => x > 4, (x,y) => y > 7));
return g;

}

This program is verifiable with the quantifier instantiation algo-
rithm described in section 4.2. The second spec is translated to a
universal quantifier in positive position that will be lifted, intro-
ducing a free global variable x . This also exposes a call(x) trig-
ger in negative position that now instantiates the quantifier in the
antecedent. The resulting proposition can now be checked with-
out further instantiations by comparing the argument and return
propositions of both functions for all possible values of x .

This suggests that the translation of λT to λS programs pre-
serves verifiability, i.e. well-typed λT programs translate to veri-
fiable λS programs.

Conjecture 1 (Translated well-typed expressions are verifiable).
If JtK is the translation of a λT expression t to λS , then Γ ⊢ t : T
implies JΓK ⊢ JtK : Q for some Q .

A formal proof of this conjecture needs to take quantifier in-
stantiation and the quantifier nesting bound into account. This in-
troduces immense complexity for the proof and goes beyond the
scope of this paper but might be addressed in future work.

Coincidentally, a sound translation of types to annotations also
enables seamless interweaving of statically-typed λT expressions
with dynamically-typed λS programs in a sound way. This might
be a step towards a full spectrum type system that bridges the gap
between verification and type checking.

6 RELATEDWORK
There have been decades of prior work on software verification.
In particular, static verification of general purpose programming
languages based on pre- and postconditions has previously been
explored in verifiers such as ESC/Java [Flanagan et al. 2002; Leino
2001], JaVerT [Fragoso Santos et al. 2018], Dafny [Leino 2010, 2013,
2017] and LiquidHaskell [Vazou et al. 2017, 2014, 2018].

ESC/Java [Flanagan et al. 2002] proposed the idea of using un-
decidable but SMT-solvable logic to provide more powerful static
checking than traditional type systems. Their proposed extended
static checking gave up on soundness to do so and instead focused
on the utility of tools to find bugs.

JaVert [Fragoso Santos et al. 2018] is a more recent program
verifier for JavaScript. It supports object-oriented programs but,
in contrast to esverify, does not support higher-order functions.
Other related work on static analysis of JavaScript include Loop-
Sensitive Analysis [Park and Ryu 2015], the TAJS Type analyzer
for JavaScript [Andreasen andMøller 2014], and type systems such
as TypeScript, Flow and Dependent JavaScript [Chugh et al. 2012].
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esverify follows as different approach as it relies on manually an-
notated assertions that are generally more expressive than types.

Dafny [Leino 2010] seeks to provide a full verification language
with support for both functional and imperative programs. Dafny
offers comprehensive support for verified programming, such as
ghost functions and parameters, termination checking, quantifiers
in user-supplied annotations, and reasoning about the heap. How-
ever, in contrast to esverify and LiquidHaskell, Dafny requires func-
tion calls in an assertion context to satisfy the precondition instead
of treating these as uninterpreted calls. Therefore, Dafny does not
support higher-order proof functions such as those shown in Sec-
tion 2.8. Additionally, quantifier instantiation in Dafny is often im-
plicit and based on heuristics, which often results in a brittle and
unpredictable verification process.

In trying to find a compromise, with predictable checking but
also a larger scope than traditional type systems, LiquidHaskell is
most closely related to esverify. In fact, the refinement type sys-
tem discussed in Section 5 loosely resembles its formalization by
Vazou et. al. [Vazou et al. 2014]. More recently, LiquidHaskell intro-
duced refinement reflection [Vazou et al. 2018], which enables exter-
nal proofs in a similar way as the spec construct in esverify, and
proof by logical evaluation which is a close cousin to the quantifier
instantiation algorithm in Section 4.2 but is not based on trigger-
ing matching patterns. In contrast to LiquidHaskell, esverify is not
based on static type checking and thus also supports dynamically-
typed programming idioms such as dynamic type checks instead
of injections.

Finally, trigger-based quantifier instantiation, as used by the de-
cision procedure described in Section 4.2, has been studied by ex-
tensive prior work [Dross et al. 2016; Ge and de Moura 2009; Leino
and Pit-Claudel 2016; Reynolds et al. 2013]. The instantiation in es-
verify is specifically bounded in order to prevent matching loops,
but further research could provide this kind of instantiation as a
built-in feature of off-the-shelf SMT solvers.

7 CONCLUSION
This paper introduced esverify, a program verifier for dynamically-
typed JavaScript programs. esverify supports both dynamic pro-
gramming idioms as well as higher-order functional programs, and
thus has an expressiveness comparable to and potentially greater
than common refinement type systems. Internally, the verifier re-
lies on a bounded quantifier instantiation algorithm and SMT solv-
ing, yielding concrete counterexamples for verification errors. We
showed that this approach to program verification is sound by for-
malizing the quantifier instantiation algorithm and the verification
rules in the Lean Theorem prover. While esverify enables verifica-
tion of non-trivial programs such as MergeSort, it lacks termina-
tion checking and support for object-oriented programming. How-
ever, it would be possible to combine it with an external termina-
tion checker for total correctness [Sereni and Jones 2005], and to
extend it with reasoning about the heap, such as regions or dy-
namic frames [Smans et al. 2009]. Finally, while the approach pre-
sented in this paper is purely static, future work might use runtime
checks similar to hybrid and gradual type checking [Ahmed et al.
2011; Knowles and Flanagan 2010; Siek and Taha 2006] to enable
sound execution of programs that are not fully verified.
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