
Live Programming by Example:
Using Direct Manipulation for Live Program Synthesis

Christopher Schuster Cormac Flanagan
University of California, Santa Cruz
{cschuste,cormac}@ucsc.edu

Abstract
To provide a better programming experience, live program-
ming environments allow changes to the code of running
programs. These changes are usually made by editing the
source code. In this paper, we introduce live programming
by example which enables updates to the code by direct ma-
nipulation of the program’s user interface. Besides a formal
definition of live programming by example, we also present
a concrete prototype implementation for JavaScript that en-
ables the programmer to change string literals in the source
code by direct manipulation of the HTML output based on
a dynamic string origin analysis. While this prototype only
supports light-weight synthesis, future live program synthe-
sis algorithms could support a wider range of program edits.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments; D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords Live Programming, Programming by example,
Program Synthesis, Direct Manipulation, JavaScript

1. Introduction
Most interactive UI applications today are based on an event-
based programming model in which user interactions are
represented as events. The main event loop then dispatches
these events to registered event handlers that change both
the internal application state as well as the visible user in-
terface. However, imperative updates to a stateful user in-
terface can results in data dependencies that are difficult
to keep consistent. Therefore, patterns such as Reactive
Programming (Bainomugisha et al. 2013) and Model-View-
Controller (Krasner and Pope 1988) have been adopted that
separate the handle code for updating the application state

[Copyright notice will appear here once ’preprint’ option is removed.]

x

Output Output’

〈Code,State〉 〈Code,State’〉

UI Interaction

event handling
render render

(a) Regular User Interaction in an Event-based System

x

〈Code,State〉 〈Code’,State〉
live code update

(b) Live Programming with Source Code Updates

x

Output Output’

〈Code,State〉 〈Code’,State〉

Direct Manipulation

live program synthesis
render render

(c) Live Programming by Direct Manipulation of the User Interface

Figure 1: In an event-based system, the user interacts with
the output to change the state of the program (a). Live pro-
gramming allows code updates to running systems (b). With
live programming by example, code updates can be per-
formed by direct manipulation of the user interface (c).

from the render code for generating the output. Figure 1a
illustrates how this programming model processes user in-
teractions.

While common user interactions only affect the appli-
cation state and output, live programming environments
like Smalltalk (Goldberg and Robson 1983) and TouchDe-
velop (Burckhardt et al. 2013) also allow changes to the code
of a running application in order to provide earlier feedback
to the programmer for both debugging and development.
Large code updates may require a restart or manual data

1 2016/6/8

migration but smaller code updates can often be applied
automatically while retaining the current application state.
In contrast to regular user interactions performed through
the application’s user interface, these live code updates are
performed in the source code editor of the development en-
vironment (see Figure 1b).

In this paper, we introduce a new kind of user/developer
interaction that extends live programming with UI interac-
tions. Instead of supplying a change to the source code, the
current user interface can modified through direct manipu-
lation (Shneiderman 1983) to change the running code. The
changed user interface serves as example for the intended
output of rendering the current state. Depending on the do-
main and programming language, there are various differ-
ent programming-by-example techniques (Lieberman 2001;
Gulwani 2011) to ‘repair’ or ‘synthesize’ a new program
whose rendered output partially or fully conforms to the pro-
vided output example. To better describe the general design
space of these systems, as illustrated in Figure 1c, we also
include a minimal formalization.

Additionally, we present a concrete prototype based on
a live programming environment for JavaScript for applica-
tions that separate rendering from event handling (Burckhardt
et al. 2013). The environment allows string constants in the
render code to be changed directly in the HTML output
based on a dynamic string origin analysis (Wang et al. 2012).
This programming environment serves as a precursor for fu-
ture systems that allow synthesis of more complex live code
modifications by direct manipulation.

To summarize, the contributions of this paper are

• a new kind of user interaction that combines live pro-
gramming of stateful event-based applications with pro-
gramming by example based on direct manipulation of
the user interface,

• a formal definition of such systems, and
• a JavaScript implementation for direct manipulation of

string constants in the render code of running programs.

2. Related Work
The term live programming is used in different contexts and
can denote the act of programming as part of a live art or
music performance or the feature of programming environ-
ment to continuously evaluate expressions and displaying
results alongside code. However, this research focusses on
live programming as the ability to change the code of a run-
ning stateful application without restarting it, also known
as hot-swapping or dynamic software update (Hicks et al.
2001), while providing immediate and continuous feedback
about these code changes. Such live programming systems
were described and motivated by Hancock (Hancock 2003)
and further explored by systems like SuperGlue, which uses
dynamic inheritance and explicit FRP signals (McDirmid
2007), and Elm, which demonstrates live programming and

time traveling with first-order FRP (Czaplicki and Chong
2013).

The solution described in this paper is based on earlier
work on live programming for event-based systems (Schuster
and Flanagan 2015) and generally follows the live program-
ming technique for TouchDevelop which requires UI render-
ing and stateful computation to be separated and prohibits
function values (closures) in the application state to allow the
state and the code to be updated independently (Burckhardt
et al. 2013). More recent work outlined the possible design
space between live programming systems that resume com-
putation (with a possibly inconsistent state) and systems that
record and replay execution (McDirmid 2013), as well as
introducing managed time as concept for supporting both
live programming and time travel (McDirmid and Edwards
2014).

Programming-by-example allows users to author pro-
grams by providing examples instead of writing source code.
Prior work on programming-by-example and programming-
by-demonstration ranges from domain-specific macro sys-
tems, visual programming languages and inference of string
processing rules (Lieberman 2001; Gulwani 2011) to depth-
limited generate-and-test approaches for general-purpose
programming languages. Most noteworthy, CodeHint (Galenson
et al. 2014) synthesizes short Java code snippets at run-
time based on user-provided queries. In order to synthesize
larger code snippets, SMT solver-aided approaches may be
a promising alternative (Torlak and Bodik 2013).

Direct Manipulation (Shneiderman 1983) of the graphi-
cal user interface is a well-known form of user interaction
with popular applications in Smalltalk (Goldberg and Rob-
son 1983), Morphic (Maloney and Smith 1995) and others.
However, direct manipulation usually only affects the cur-
rent state of visible objects. Recent work on Prodirect ma-
nipulation (Chugh et al. 2016) shows how direct manipula-
tion of SVG vector graphics can be used to automatically
modify the SVG rendering code. The same idea has also
been applied to the manipulation of string constants in PHP
web applications (Wang et al. 2012). These two projects are
most closely related to this paper but do not support live code
updates of stateful applications without restarting the execu-
tion.

3. Live Programming for Event-based
Languages

Live programming enables changes to the source code of
running programs without restarting its execution. The in-
herent entanglement of state and code poses a challenge
for live programming but approaches like functional reac-
tive programming or a separation of rendering and event
handling enable programmers to perform many live updates
without manual data migration or restarting the execution.

2 2016/6/8

1 <div>

2 <input id="i" />

3 <p id="o"></p>

4 </div>

5 <script >

6 var inp = document.getElementById("i");

7 var out = document.getElementById("o");

8 var str = "";

9 inp.onkeyup = function () {

10 str = inp.value;

11 out.innerHTML =

12 str.replace(/keyboard/g,"leopard");

13 }

14 </script >

Figure 2: Example JavaScript code with an event handler
performing imperative state and DOM updates.

var str = "";

function keyup(evt) {

str = evt.target.value;

}

function render () {

return (<div>

<input value ={str} onkeyup ={keyup} />

<p>

{str.replace (/ keyboard/g,"leopard")}

</p>

</div>);

}

Figure 3: JavaScript code corresponding to Figure 2 with
separate rendering and event handling. Here, inline HTML
tags are used to create a tree representation of the output and
attach event handlers.

3.1 Example JavaScript Application
To illustrate the challenges of live programming for general
imperative applications, we consider a simple interactive
application that replaces keywords in a text according to a
fixed rule1.

Figure 2 shows a ‘traditional’ way of implementing this
application with imperative updates to register and modify
event handlers (inp.onkeyup), mutate global state (str) and
update the graphical user interface (out.innerHTML).

In the context of live programming, changing "leopard"

to "butterfly" in Figure 2 should ideally also update the
visible output without modifying the application state. How-
ever, this would involve registering the modified function as
new event handler (line 9) and updating the output (line 11
and 12) without also mutating the state (line 10). Due to

1 There are several browser extensions to replace keywords on webpages,
some of which are inspired by https://xkcd.com/1031/.

the structure of the code, the only choice is to update the
event handler and display an inconsistent output until the
next keyup event, or to restart the application and force the
user to re-enter the string.

3.2 Separating Rendering from Event Handling
In the example shown in Figure 2, any change in the appli-
cation state involves corresponding updates in the output to
ensure consistency. Programming models such as Reactive
Programming (Bainomugisha et al. 2013) and Model-View-
Controller (Kransner and Pope 1988) solve this issue by sep-
arating the rendering code from other stateful computation.
Figure 3 shows an implementation of the same application
but the output will be generated by a pure render function,
which cannot modify the application state, and events will be
handled without directly accessing the DOM output. Instead,
any state modification automatically triggers a re-rendering
to keep the output continuously consistent.

3.3 Live Code Updates
Separating rendering from event handling has the additional
advantage that both can be updated independently. Follow-
ing the example from Section 3.1, changing "leopard" to
"butterfly" in Figure 3 can now automatically re-render the
output with the new rendering code. Since render is pure,
this process does not affect the application state.

In contrast to changes to the rendering code, changes to
the event handling will not immediately be visible in the
output. Instead, the updated code will be used to handle all
subsequent events2.

In addition to live programming, separating rendering
from event handling also has advantages for back-in-time
debugging. By either recording events or snapshotting the
application state between events, it is possible to travel back
in time and visualize past execution states using the pure
rendering mechanism. Combining back-in-time debugging
with live programming enables the programmer to navigate
both execution as well as the version history simultaneously.

3.4 Limitations
Changes to the program code may involve added, modified
or removed function definitions. Unfortunately, function val-
ues/closures in the application state cannot always be auto-
matically transformed to match the new code, therefore clo-
sures are currently not allowed in the application state.

Additionally, an application that resumed execution with
an updated event handler may behave different than an ap-
plication that has been restarted. Depending on the develop-
ment or debugging context, this may or may not be desirable.

Finally, changes to the initialization code of the program
or the data type of the application state will likely result in
an incompatibility and require either manual data migration
or a restart.

2 Alternatively, it is possible to restart the execution and replay past events.

3 2016/6/8

https://xkcd.com/1031/

4. Live Programming by Example
Live programming systems as described in the previous sec-
tion enable program updates at runtime for changes made
to the program source code. By separating rendering from
event handling, the application output can be updated in re-
action to code changes to provide visual feedback to the de-
veloper. Extending on this idea, the output of the program
can also be used by the developer to make changes to the
program — in particular in cases where direct manipulation
is more convenient or intuitive than edits to the source code.
This idea of live programming by example is also illustrated
in Figure 1c.

4.1 Formal Definition
Live programming by example is applicable to a wide range
of applications and programming languages. To clarify the
semantics and system requirements for the approach out-
lined in this paper, we model the system configuration and
its transitions on a higher level of abstraction.

Figure 4 shows a formal definition of a system that sup-
ports live programming by example. The input events q, user
interface representation o, values v, expressions e and evalu-
ation semantics e ↓ v all depend on the concrete implemen-
tation and are mostly left unspecified. However, the system
has to be event-based in the sense that input from the envi-
ronment is supplied as sequence of events q. Additionally,
the output of the application is not generated imperatively
(e.g. via printf statements); instead, it is summarized as a
single value o (e.g. the DOM of a JavaScript application or
the framebuffer of an OpenGL application).

Following the programming model described in Sec-
tion 3.2, the program code is partitioned into event handling
h and rendering r such that h is a function that mutates
state s in response to events while r is a pure function that
generates output o.

There are three different high-level interactions with the
system. Regular input events are processed by evaluating
the event handler and rendering the potentially modified
state (E-EVENT). Updates to the program code h or r are
performed without changing the state such that the output
is re-rendered with the new rendering code r′ and subse-
quent events are handled with h′ (E-SWAP). Given output
o, the developer can initiate live programming by example
by changing the output o into a desired output example o′

that is then used for synthesis (E-EXAMPLE). The judgement
(r, s, o)5r′ infers a modified render function r′ from r such
that, ideally, the output o′′ generated by the synthesized ren-
der function r′ exactly matches the user example o′ = o′′.
However, it may be advantageous to use a heuristic that pri-
oritizes smaller changes to the render function r and toler-
ates minor differences between new output and the example
o′ ≈ o′′.

Apart from language details of the implementation and
the concrete UI representation of the output, this definition

q ::= [keypress v] | [click v v] | ... (Input Events)

o ::= [label v] | [row o o] | ... (User Interface)

h, r, s, v ::= λx. e | 〈v, v〉 | q | o | ... (Values)

e ::= v | e(e) | x | 〈e, e〉 | ... (Expressions)

i ::= q | [swap h r] | [example o] (Interactions)

h (Handle) r (Render) s (State) e ↓ v (Evaluation)

〈h, r, s〉 (System Configuration)

〈h, r, s〉 i
o
〈h, r, s〉 (System Transitions)

(r, s, o′)5 r′ (Synthesize r′ to match example o′)

h(s, q) ↓ s′ r(s′) ↓ o
〈h, r, s〉 q

o
〈h, r, s′〉

E-EVENT

r′(s) ↓ o

〈h, r, s〉 [swap h′ r′]
o
〈h′, r′, s〉

E-SWAP

(r, s, o′)5 r′ r′(s) ↓ o′′ o′ ≈ o′′

〈h, r, s〉 [example o′]
o′′
〈h, r′, s〉

E-EXAMPLE

Figure 4: Formal definition of a system that supports user
input events, live code updates, and live programming by
example. The program has to be partitioned into event han-
dling h and rendering r but the evaluation semantics e ↓ v
of the underlying language is left unspecified.

highlights the design space for live programming by exam-
ple. Both the program synthesis technique (5) as well as the
user intent of supplied examples (≈) enable a wide range of
different approaches ranging from the simple manipulation
of string literals to sophisticated direct manipulation interac-
tions and end-user programming.

5. Editing String Literals in JavaScript
Programs by Direct UI Manipulation

Based on prior work on live programming environments
for event-based languages (Schuster and Flanagan 2015), we
implement a first prototype that supports live programming
by example for editing string literals in JavaScript applica-
tion through UI manipulation. Its source code3 and a live
demo4 are both publicly available.

3 Source code at http://github.com/levjj/rde/
4 Online live demo at http://levjj.github.io/rde/

4 2016/6/8

http://github.com/levjj/rde/
http://levjj.github.io/rde/

1

2

3

Figure 5: The live programming environment features an editor, a live view of the output as well as controls for traveling to
previous code versions/execution states. Stopping the normal execution 1 prevents event processing but enables other forms
of UI interaction like changes to text displayed in the output 2 . This kind of UI manipulation is used to automatically change
corresponding string literals in the source code 3 .

5.1 Example Interaction
Given an example application for replacing keywords in a
text according to a static replacement rule (see Section 3.1),
this rule in the source code can be modified through UI ma-
nipulation. Our approach depends on a separation of render-
ing and event handling (see Section 3.2), so that changing
the string constant "leopard" to "butterfly" immediately
updates the output accordingly. This change can be done by
directly editing the source code, but it can also be performed
by editing the output such that the generating string literal in
the source code will be changed to match the intended output
example (see Figure 5).

Interactions with the application’s user interface are usu-
ally handled by the application itself. In order to support live
programming by example, the programming environment
provides a way to halt execution 1 and enable a special
interaction mode for the application’s user interface. Alter-
natively, it may be possible to reserve certain controls for
this purpose, e.g. reserving a special meta key for direct ma-
nipulation or using halo controls (Maloney and Smith 1995).

Different forms of direct manipulation may be available
(e.g. resizing or reordering via drag and drop). In this exam-
ple, the text of the static label (<p>) becomes editable by the
user/programmer 2 .

Parts of the label text "leopard" originate from a string
literal in the program source code. Therefore, the string
literal is highlighted in the editor 3 and changes in the
user interface will also be applied to the source code. Text
parts that do not originate from source code literals cannot be
modified. Any change to the source code causes the output
to be re-rendered, so if the word “keyboard” would appear
more than once in the input text, all of its occurrences would

be replaced according to the new render function thereby
ensuring consistency between code and output.

5.2 String-origin Analysis
In order to support the interaction outlined in the previous
section, the environment needs a mapping of strings in the
output to their generating string literals in the source code.
This mapping can be obtained by instrumenting the execu-
tion such that string values are tagged with provenance in-
formation. This form of dynamic analysis is closely related
to dynamic taint analysis for information flow security.

As a first step, all string literals/constants in the source
code are assigned a unique identifier by replacing them with
constructor calls, yielding tagged string values with origin
information.

var x = "ab";

--> var x = stringlit("ab", 23);

Additionally, built-in unary and binary operations which
cannot be instrumented are replaced with calls to custom
functions implementing these operators.

var y = x + "c";

--> var y = addop(x, stringlit("c", 42));

Tagged string objects include a custom implementation of
concatenation, substring extraction, replacement and other
common string operators (e.g. str.toLowerCase()), such
that origin information is retained but otherwise behave like
regular string values. As a result, different parts of a string
can originate from different string literals. The origin infor-
mation therefore includes all subparts of a string alongside
the identifier of the generating string literal and offset.

5 2016/6/8

var x = "ab"; //[["ab",23,0]]

var y = x + "c";//[["ab",23,0],["c",42,0]]

var z = y[1]; //[["b", 23,1]]

JavaScript code that is not part of the program, especially
built-in/native code, is not subject to source code rewriting.
To ensure correct behavior for applications passing tagged
strings to built-in functions, the tagged string values are
wrapped in a proxy (Van Cutsem and Miller 2010) that au-
tomatically converts tagged strings to primitive strings when
no instrumentation is possible or necessary (e.g. for pars-
ing strings as integers). Additionally, input events from the
DOM passed to event handlers are wrapped in a proxy mem-
brane that transparently converts primitive strings to tagged
strings. While this approach preserves program behavior, it
is possible for a string to ‘lose’ its origin information due to
built-in JavaScript functions.

5.3 Programming Environment Integration
The kinds of UI interactions supported for live programming
depend on the domain and concrete representation of the
output. In the context of the live programming environment
for JavaScript, the output is a tree of HTML/DOM elements
and attributes. With string origin tracking, plain text content,
attributes and element names can potentially contain origin
information.

The programming environment shown in Figure 5 sup-
ports two ways of manipulating the output for the purpose
of live program synthesis. The developer can either edit the
raw HTML code or manipulate the graphical user interface.
The HTML representation has the advantage that all parts of
the output including element names and attribute keys can
easily be modified textually. Manipulation of the actual UI is
limited to the plain text content of visible HTML elements
but is highly intuitive and immediate.

Given a modified DOM tree, the program synthesis gen-
erally follows the following informal algorithm:

1. Determine the previous output based on the current ren-
dering code and application state.

2. Compute the difference between the provided example
and previous output. (The modified DOM tree either has
new characters inserted, existing characters removed or
both5.)

3. Check origin information of the modified characters.
Modifications to string parts that do not have origin in-
formation cannot be handled and will be suppressed.

4. Determine source code location of the generating string
literals using string origin information and a mapping
from string literals to AST nodes.

5. Use the source code location and computed offsets to
insert or delete characters in the program source code.

5 Changes to the tree structure of the DOM output are not currently sup-
ported and remain future work.

6. Recompile code and obtain a new rendering method.

7. Render output using the modified rendering code and the
current program state.

6. Discussion and Conclusions
Based on both live programming and programming by ex-
ample, we introduce live programming by example as a way
to change the code of a running program by direct manip-
ulation of its user interface. We also describe a concrete
live programming environment for JavaScript that allows
changes to string literals in the source code by editing text in
HTML/DOM output.

The approach presented in this paper requires applica-
tions to separate rendering from event handling. Thereby,
any updates to the rendering code can be synthesized and ap-
plied immediately. Updates to the event handling code will
only affect subsequent events and therefore live program-
ming by example is not directly applicable to the event han-
dling code. A possible solution is to replay past events in-
stead of resuming execution with the existing state. How-
ever, it is not always clear how many events have to be re-
played as replaying all events may not be practical or desir-
able for long-running applications and replaying just the last
event may not suffice.

Changing string literals in the program by manipulating
text in the output is a very simple implementation of live pro-
gramming by example and thereby avoids ambiguities that
are common in program synthesis applications6. However,
more complex live programming by example solutions have
to address potential ambiguities with heuristics or manual
user intervention.

Finally, the program environment presented in this paper
mainly serves as a precursor for future systems that support
more sophisticated program synthesis guided by more flex-
ible forms of direct manipulation. Moreover, the approach
still needs to be evaluated for larger applications and devel-
opment tasks — potentially as part of a user study.

References
E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and

W. d. Meuter. A survey on reactive programming. ACM Comput.
Surv., 45(4):52:1–52:34, Aug. 2013. ISSN 0360-0300. doi:
10.1145/2501654.2501666.

S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid,
M. Moskal, N. Tillmann, and J. Kato. It’s alive! continuous
feedback in ui programming. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 95–104, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.
2462170.

6 The string synthesis technique is still ambiguous as inserted characters
between two different generating string literals can be inserted either at the
end of the first string literal or the start of the next one. We currently resolve
this ambiguity by always prioritizing the first string literal.

6 2016/6/8

R. Chugh, B. Hempel, M. Spradlin, and J. Albers. Programmatic
and direct manipulation, together at last. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, June 2016.

E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for guis. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, PLDI ’13, pages 411–422, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.
2462161.

J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen. Code-
hint: Dynamic and interactive synthesis of code snippets. In
Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 653–663, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.
2568250.

A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1983. ISBN 0-201-11371-6.

S. Gulwani. Automating string processing in spreadsheets using
input-output examples. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 317–330, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0490-0.

C. M. Hancock. Real-time Programming and the Big Ideas of
Computational Literacy. PhD thesis, Cambridge, MA, USA,
2003. AAI0805688.

M. Hicks, J. T. Moore, and S. Nettles. Dynamic software updat-
ing. In Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, PLDI ’01,
pages 13–23, New York, NY, USA, 2001. ACM. ISBN 1-58113-
414-2.

G. Kransner and S. Pope. Cookbook for using the model-view-
controller user interface paradigm. Object Oriented Program-
ming, pages 26–49, 1988.

G. E. Krasner and S. T. Pope. A cookbook for using the model-view
controller user interface paradigm in smalltalk-80. J. Object
Oriented Program., 1(3):26–49, Aug. 1988. ISSN 0896-8438.

H. Lieberman. Your wish is my command: Programming by exam-
ple. Morgan Kaufmann, 2001.

J. H. Maloney and R. B. Smith. Directness and liveness in the mor-
phic user interface construction environment. In Proceedings of
the 8th Annual ACM Symposium on User Interface and Software
Technology, UIST ’95, pages 21–28, New York, NY, USA, 1995.
ACM. ISBN 0-89791-709-X.

S. McDirmid. Living it up with a live programming language. In
Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOP-
SLA ’07, pages 623–638, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-786-5.

S. McDirmid. Usable live programming. In Proceedings of
the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, On-
ward! 2013, pages 53–62, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2472-4.

S. McDirmid and J. Edwards. Programming with managed time.
In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2014, pages 1–10, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-3210-1.

C. Schuster and C. Flanagan. Live programming for event-based
languages. In Proceedings of the 2015 Reactive and Event-based
Languages and Systems Workshop, REBLS ’15, October 2015.

B. Shneiderman. Direct manipulation: A step beyond programming
languages. Computer, 16(8):57–69, Aug. 1983. ISSN 0018-
9162.

E. Torlak and R. Bodik. Growing solver-aided languages with
rosette. In Proceedings of the 2013 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software, Onward! 2013, pages 135–152, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2472-4.

T. Van Cutsem and M. S. Miller. Proxies: Design principles for
robust object-oriented intercession apis. In Proceedings of the
6th Symposium on Dynamic Languages, DLS ’10, pages 59–72,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0405-4.

X. Wang, L. Zhang, T. Xie, Y. Xiong, and H. Mei. Automating
presentation changes in dynamic web applications via collabo-
rative hybrid analysis. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 16:1–16:11, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1614-9.

7 2016/6/8

	Introduction
	Related Work
	Live Programming for Event-based Languages
	Example JavaScript Application
	Separating Rendering from Event Handling
	Live Code Updates
	Limitations

	Live Programming by Example
	Formal Definition

	Editing String Literals in JavaScript Programs by Direct UI Manipulation
	Example Interaction
	String-origin Analysis
	Programming Environment Integration

	Discussion and Conclusions

