
Reification of

Execution State

in JavaScript

Implementing the Lively Debugger

Christopher Schuster

A thesis submitted in partial fulfillment
of the requirements for the Degree of

Master of Science

Software Architecture Group
Hasso Plattner Institute
University of Potsdam

Germany

Supervisors:
Prof. Dr. Robert Hirschfeld

Jens Lincke

April 2012

ii

Contents

Abstract xv

Acknowledgements xix

1 Introduction 1

2 Execution state 3
2.1 Hardware level . 3

2.2 Operating system level . 4

2.3 High-level languages . 4

2.3.1 Compiled Code . 5

2.3.2 Interpretation . 5

2.3.3 Virtual machines . 6

3 Execution state in JavaScript 9
3.1 JavaScript language . 9

3.1.1 Expressions and control flow . 9

3.1.2 Function calls . 10

3.1.3 Scoping . 11

3.2 Major JavaScript implementations . 11

3.2.1 JägerMonkey . 12

3.2.2 V8 . 13

3.3 Debugging . 13

3.3.1 Firebug . 13

3.3.2 Logging . 14

4 Lively development tools 15
4.1 The Lively environment . 15

4.2 Class system . 15

4.3 Morphic . 16

4.3.1 Writing Morphic applications . 17

4.4 Debugging . 18

iii

iv CONTENTS

4.4.1 Logging . 18

4.4.2 Displaying execution state . 18

4.4.3 Observing execution . 19

5 Partial interpretation 21
5.1 Interpreting JavaScript . 21

5.1.1 Execution engine . 21

5.1.2 Memory management . 22

5.1.3 Accessing the execution state . 22

5.2 Limiting the scope of interpretation . 23

5.2.1 Identifying relevant execution state 23

5.2.2 Debugging scope generally undecidable 24

5.3 Execution state outside interpreter . 25

5.3.1 Method wrappers . 25

5.3.2 Source code transformations . 25

5.3.3 Rebuilding Stack . 26

6 Implementation 27
6.1 Restricting JavaScript . 27

6.1.1 Scoped variables . 27

6.1.2 Other language features . 28

6.2 Parsing . 29

6.2.1 Language extension . 29

6.3 Interpretation . 30

6.3.1 Evaluating the abstract syntax tree 30

6.3.2 Scoping . 32

6.4 Breakpoints . 32

6.4.1 Stepping . 34

6.4.2 Descending into function call . 36

6.5 Resuming execution . 36

6.5.1 Program counter . 36

6.5.2 Resuming with numerical program counter 37

6.5.3 Storing intermediate results . 38

6.5.4 Interpreter call stack . 40

6.6 Native Code . 43

6.6.1 Single interpreter call stack . 43

6.6.2 Nested interpreter call stacks . 43

6.6.3 Unified call stack . 44

6.6.4 Method wrappers . 44

6.6.5 No native code . 44

6.7 Lively Integration . 45

6.7.1 Debugger statement . 46

CONTENTS v

6.7.2 Debug selection shortcut . 46

6.7.3 Test runner . 46

6.7.4 Global error handler . 47

6.7.5 Debugger user interface . 47

7 Discussion 49
7.1 Restrictions with partial interpretation . 49

7.1.1 Language restrictions . 49

7.1.2 Explicit variable bindings in closures 50

7.1.3 System organization . 50

7.2 Limits of the Lively debugger . 51

7.2.1 Debugging without interpretation 51

7.2.2 Compatibility with meta-programming 51

7.2.3 Concurrency . 52

7.3 Performance evaluation . 52

7.3.1 Interpretation . 53

7.3.2 Method wrappers . 53

8 Related work 57
8.1 JavaScript debugging . 57

8.1.1 Record and replay . 57

8.1.2 End-user development . 58

8.2 Omniscient debugging . 58

8.2.1 Logging . 59

8.2.2 Snapshots . 59

8.3 Declarative debugging . 59

9 Future Work 61
9.1 Source code transformations . 61

9.1.1 Simple call tracing . 61

9.1.2 Execution state reification . 62

9.2 Omniscient debugging . 64

9.3 Advances in browser technology . 64

9.4 Persistent debugging context . 65

10 Conclusions 67

Bibliography 69

vi CONTENTS

List of Figures

2.1 Execution state in hardware . 3

2.2 Execution state in a multi-tasking operating system 4

2.3 Execution state in the C language according to the calling convention
of the Intel x86 processor architecture [1]. The processor is currently
computing the new result for t and has not returned from c() yet. . . . 5

2.4 Basic virtual machine components . 7

4.1 System code browser displaying the module in Listing 4.1 17

4.2 Writing Morphic scripts with the object editor 18

4.3 Hierarchical object inspector . 19

5.1 Using an interpreter on top of the JavaScript virtual machine (VM) to
enable execution state reification. This diagram uses the same notation as
Figure 2.4. 22

5.2 By interpreting parts of the Lively environment the debugger is able
to access the execution state of the interpreted code at runtime. This
diagram uses the same notation as Figure 2.4. 23

6.1 JavaScript source is parsed to generate nested lists which in turn are
transformed to an abstract syntax tree (AST). We use the list and pointer
notation by Newell and Shaw [2] and the Unified Modeling Language
(UML) [3] (UML) Object Diagram notation for the AST. 30

6.2 Depth-first postorder AST linearization of the code shown in 6.1. 37

6.3 Combined native and interpreter call stack at different points in time
during the execution of Listing 6.10. 41

6.4 Combined native and interpreter call stack at different points in time af-
ter resuming the execution in Figure 6.3 following a bottom-up approach. 41

6.5 Combined native and interpreter call stack at different points in time
after resuming the execution in Figure 6.3 following a top-down approach. 42

6.6 Debugger user interface displaying native and interpreted stack frames 48

vii

viii LIST OF FIGURES

List of Listings

2.1 Example C program . 6

2.2 Debug information in generated Assembler code for Listing 2.1. 6

3.1 Scoping in JavaScript . 11

3.2 Closures in JavaScript . 12

4.1 Dice.js: A module for a dice rolling game 16

6.1 JavaScript language features which are not supported by the interpreter. 28

6.2 Simplified source code of the visitBinaryOp method of the interpreter. 31

6.3 Implementation of closures by retaining the reference to the surround-
ing scope in the visitFunction method of the interpreter. 33

6.4 Visiting explicit breakpoints, i.e.debugger statements, in the interpreter. 33

6.5 Statement stepping halts before assigning b 34

6.6 Expression stepping halts before calling g() 34

6.7 Implementation of breakpoints and stepping 35

6.8 Resuming implementation based on a numerical program counter (PC). 39

6.9 Resuming implementation based on stored intermediate results. 40

6.10 JavaScript functions calling each other. The debugger statement in b()

causes it to get executed by the interpreter. 41

6.11 Resuming the interpreter call stack with the top-down approach. 42

6.12 Array iterator each is native but takes a user function as callback. 43

7.1 Inaccessible variable binding in natively executed code results in wrong
variable lookup by the interpreter. 50

9.1 Example JavaScript program . 61

9.2 Listing 9.1 in static single assignment (SSA) form 61

9.3 Transformed source code of Listing 9.1 to capture local variables 62

9.4 Transformed Listing 9.2 to reify the complete execution state using SSAs 63

9.5 Transformed Listing 9.1 to reify the complete execution state by using a
value dictionary instead of SSAs . 63

ix

x LIST OF LISTINGS

List of Tables

3.1 Faulty JavaScript expressions and their return values 10

6.1 Conversion of special JavaScript abstractions to equivalent abstractions
with greater generality. 32

6.2 Performance comparison of native Array.forEach and custom forEach. 45

7.1 Micro-benchmark with native and interpreted code. 54

7.2 Morphic benchmark with native, instrumented and interpreted code. . 54

xi

xii LIST OF TABLES

Acronyms

API Application Programming Interface. xv, 13, 17, 18, 21, 25, 43, 57, 58, 64, 68

AST Abstract Syntax Tree. iv, vii, 13, 22, 29–31, 33, 34, 36–38, 40, 42, 46

COP Context-Oriented Programming. 25, 45, 51, 52

CSS Cascading Style Sheets. 13

DOM Document Object Model: Object-oriented interface for interacting with the
browser. 13, 16, 57

HTML HyperText Markup Language [4, 5]. 1, 13, 14, 16

IDE Integrated Development Environment: Software system with editor, debugger,
project and build management. 13

IR Intermediate Representation: Machine-generated source code representation
which is suitable for optimization and further processing. 12, 13, 22, 36, 37

JIT Just-in-time compilation occurs during the program runtime as opposed to ahead-
of-time (AOT) compilation done by traditional compilers.. 7, 8, 12, 53

PC Program Counter: A special register storing the memory address of the next in-
struction to execute. iv, ix, 3, 5, 26, 36, 37, 39, 40, 48, 62, 64

SP Stack Pointer: A special register storing the memory address of the current top
element on the stack. 3

SSA Static Single Assignment. ix, 12, 26, 40, 61–63

SVG Scalable Vector Graphics [39]. 16

TTD Test-Driven Development [57]. 46

xiii

xiv Acronyms

UML Unified Modeling Language (UML) [3]. vii, 30

VM Virtual Machine: A virtual environment abstracting the underlying hardware and
platform. iii, vii, xv, 6, 7, 11, 13, 21–24, 27, 31, 33, 38, 40, 52, 53, 59, 62, 64, 67

Abstract

As web pages evolve to complex software applications, the web authoring tools must
evolve as well. The Lively system integrates development and deployment of appli-
cations into a collaborative, self-sustaining environment on the web. However, the
JavaScript debugging tools in Lively are still incomplete due to the lack of a cross-
browser debugging API that allows access to the runtime execution state without re-
lying on plugins.

We achieved execution state reification by interpreting JavaScript on top of the under-
lying JavaScript VM. This does not affect the runtime performance of Lively because
the interpreter is only used for code that explicitly requires access to the execution
state. Seamless transitions between natively executed and interpreted code enable on-
demand debugging with breakpoints and stepping.

The implementation of this approach showed that closures and other JavaScript fea-
tures like dynamic evaluation cause problems when both modes of execution work
together. These problems were solved for Lively by restricting these language features
but a general purpose cross-browser debugger is topic of future work.

xv

xvi Abstract

Zusammenfassung

Die Fortschritte bei den Webtechnologien haben mittlerweile dazu geführt, dass aus
einfachen Webseiten komplexe Softwareanwendungen wurden. Die Werkzeuge zum
Entwickeln dieser Anwendungen müssen sich somit auch weiterentwickeln. Das
Lively-Projekt hat sich zum Ziel gesetzt, Webinhalte und -anwendungen auch direkt
kollaborativ im Web zu erstellen aber wird hierbei maßgeblich von den fehlenden
Browser-Schnittstellen bei der Bereitstellung dieser Entwicklungswerkzeuge behin-
dert. Gerade die Fehlersuche in den Webanwendungen kann momentan nur durch
Browser-Plugins realisiert werden.

Wir haben diese fehlenden Schnittstellen nun bereitgestellt, indem wir einen JavaScript
Interpreter entwickelt haben, der innerhalb des Browsers Code ausführen und
insbesondere auch anhalten kann und es somit ermöglicht, den aktuellen Aus-
führungszustand zur Fehlersuche zu nutzen. Dieser Interpreter führt allerdings nicht
dazu, dass die Ausführungsgeschwindigkeit von Lively leidet, da er nur bei Be-
darf genutzt wird, also beispielsweise zur schrittweisen Ausführung des Programms.
Die Ausführung wechselt hierbei zwischen dem Interpreter und JavaScript VM des
Browsers.

Bestimmte Konzepte der JavaScript-Programmiersprache, wie Funktionen mit
gekapseltem Zustand und die dynamische Codeausführung, haben sich dann bei
der Implementierung als problematisch erwiesen für die Zusammenarbeit dieser bei-
den Ausführungsmodi und werden nicht unterstützt. Die im Rahmen dieser Arbeit
entwickelten Werkzeuge zur Fehlersuche funktionieren somit nicht für beliebigen
JavaScript-Code. Sie können aber für Lively effektiv eingesetzt werden.

xvii

xviii Zusammenfassung

Acknowledgements

I owe my deepest gratitude to Robert Krahn for his ongoing support and especially
for his work on stack reification in Lively on which this thesis is based. I am also
very thankful to my supervisor, Jens Lincke, and my professor, Robert Hirschfeld, for
many insightful discussions and their guidance with the research and the writing of
this thesis. Additionally, I would like to thank Tobias Pape who helped me with his
expertise in typography.

Lastly, this thesis would not have been possible without the support and understand-
ing of my friends and family.

Christopher Schuster

xix

xx Acknowledgements

Chapter 1

Introduction

Over the last two decades, web pages evolved from simple documents with texts,
images and forms to complex interactive applications. The web browser still uses
HyperText Markup Language [4, 5] (HTML) for presentation, but it also supports
interaction and dynamic behavior by means of embedded JavaScript1 code.

The wide availability of JavaScript across all kinds of devices makes it the language
of choice for programming web applications which have the advantage of not needing
local installation, being platform-independent, being immediately globally available
over the Internet, while at the same time protecting the user from malicious code
by running in a sandbox with limited capabilities. For these reasons, “the web is
displacing proprietary operating systems as the next application platform”[7].

The Lively project goes one step further in this direction by providing an integrated
environment that is both source and target platform for applications and content on
the web. Being written in itself, the self-sustaining Lively environment is programmed
incrementally and relies on continuous testing and debugging to eliminate program-
ming errors. This makes sophisticated development tools like debuggers essential. In
fact, the general lack of adequate debugging tools across all programming languages
is also known as the “debugging scandal” [8].

All debugging tools have in common that they support the developer in finding
and understanding the cause of failures or unintended behavior by narrowing down
the number of possible locations of this bug in the source code. The Lively debugging
tools are unaware of the developer’s intentions and therefore focus on letting devel-
oper observe the execution of a program and inspect its execution state at different
points in time.

1JavaScript is a dialect of ECMAScript [6] used in all major web browsers.

1

2 CHAPTER 1. INTRODUCTION

This execution state, however, is managed internally by the JavaScript engine and not
accessible in a uniform way across different browsers.

“It is lamentable that the JavaScript standard provides almost no access to
the runtime execution state [...] and the ability to resume a suspending
computation.”

Ingalls et al. [9]

The implicit execution state of the running program has to be made explicit, it has to
be reified, so that JavaScript tools that can access and manipulate it without depending
on plugins or other browser-specific interfaces. The reification of the execution state
in order to implement debugging tools for Lively is the topic of this thesis.

Outline

The chapters 2, 3 and 4 are explaining basic concepts and definitions necessary to
understand the following chapters.

• Chapter 2 describes what the term execution state refers to in different environ-
ments and how it can be accessed.

• Chapter 3 deals with the JavaScript language in particular and to what degree
modern web browsers enable execution state reification.

• Chapter 4 describes the Lively environment and its existing development tools.

The main part of this thesis focuses on the way JavaScript execution is altered in Lively
to access the execution state and to provide a debugger capable of halting, resuming
and stepping.

• Chapter 5 describes the approach of using a JavaScript interpreter to reify the
execution state while restricting it to relevant code to limit the performance over-
head.

• Chapter 6 outlines the design and implementation of this approach including
the integration into the Lively environment.

The last part of the thesis sets the work into context and concludes the thesis.

• Chapter 7 discusses the results and experiences with execution state reification
as described in the previous chapters.

• Chapter 8 points to related work.

• Chapter 9 considers possible future extensions and research ideas based on this
work.

• Chapter 10 summarizes the lessons learned.

Chapter 2

Execution state

At each point in time a program currently in execution has a certain state. This exe-
cution state is partly explicitly defined in the programming language, e.g. with local
variables, and partly held by the hardware, the operating system, and the runtime
environment.

Programs are usually written to serve a certain purpose or to solve a specific prob-
lem in the domain the user is interested in. The internals of the underlying execution
are not part of this domain and therefore only implicitly assumed in the program
source code. Some programs, however, are concerned about their own execution or
the execution of other programs for reasons like logging, tracing, profiling, security or
debugging. In these cases, the execution state itself is part of the domain. To enable
this type of meta-programming, the execution state needs to be explicitly addressable in
the program, the execution state must be reified.

There are different ways of execution state reification depending on the level of
abstraction.

2.1 Hardware level

Stack

Memory

Heap

PC

Registers

SP

R1

R2

...

Figure 2.1: Execution state in hardware

Computers designed in accordance with
the Von Neumann architecture [10] execute
software by treating parts of the data in
memory as instructions. These instruc-
tions operate on registers, memory and
hardware devices. Therefore the exe-
cution state in the context of a proces-
sor consists of the registers, the mem-
ory, which is divided in the heap and the
stack, the program counter (PC), stack
pointer (SP) as well as other special registers depending on the architecture.

3

4 CHAPTER 2. EXECUTION STATE

Execution State reification can either be done by accessing the maintenance interfaces
of the hardware with external devices or by using special processor instructions for
debugging if the processor offers them.

2.2 Operating system level

Software running on top of a multi-tasking operating system is restricted in its inter-
action with the underlying hardware and other programs. This is necessary to allow
the operating system to manage shared resources of different simultaneously running
programs. All of these programs have their own execution states. Such an execu-
tion state is not simply identical to the execution state of the processor. Instead, it is
managed by the operating system and also includes the internal state of the operating
system with regard to the program, such as open file handles, quota, etc.

Process 1

Memory

Registers

File Descriptors

...

Process 2

Memory

Registers

File Descriptors

...

...

Process n

Memory

Registers

File Descriptors

...

Figure 2.2: Execution state in a multi-tasking operating system

Therefore programs that deal with the execution state of other programs, such as
debuggers, need to be aware of the operating system and the state held by it for the
program in question.

2.3 High-level languages

High-level programming languages offer abstractions to help the programmer. They
advocate variables instead of registers, structural programming instead of branching
and function calls instead of manual stack manipulation. This means that the execu-
tion state needs to be reified on the same level of abstraction.

Function calls branch to a subroutine with the ability to return to the call-site. This
is done by saving and restoring the state of the current thread of execution on the

2.3. HIGH-LEVEL LANGUAGES 5

stack. Each of these stack frames includes the return address, as well as arguments,
local variables, temporary variables and register values. Shared state that is non-local
to the thread is considered global and not stored on the stack.

void a(){
...
b(3);
...

}
void b(int i) {
int t = 2;
t = i + 3 + c();

}
int c() {
...

}

Stack Frame for a()

Thread-local state

Static Variables

Global state

Program Codei (=3) Parameters

Return address

t (=2) Local variables

esi, edi,... Saved registers

i + 3 (=6) Intermediate results

Stack Frame for c()

Figure 2.3: Execution state in the C language according to the calling convention of the
Intel x86 processor architecture [1]. The processor is currently computing
the new result for t and has not returned from c() yet.

2.3.1 Compiled Code

If the language is compiled to machine code, high-level abstractions are usually lost
and the generated code is unreadable for the user. This is why debuggers for compiled
languages like the GDB1 require the compiler, e.g. GCC2, to emit additional metadata
as shown in Listing 2.23. Among this information are symbolic names for variables
and functions (hence the name symbolic debugger) as well as the mapping between
instruction data and line numbers in the source code. Combined with the native
execution state of the program it is now possible to represent the execution state in
terms of the high-level programming language, e.g. the PC can be a line in the source
code instead of a memory address.

2.3.2 Interpretation

Another way to execute a program written in a high-level language is to interpret
the code at runtime. The interpreter is using the program’s source code as input

1The GNU Debugger is an open-source source-level debugger for C, C++ and other languages [11]
2GNU Compiler Collection [12]
3There multiple standards for debugging metadata, e.g. DWARF by the Free Standards Group [13]

6 CHAPTER 2. EXECUTION STATE

1 void b(int i) {
2 int t = 2;
3 t = i + 3 + c();
4 }

Listing 2.1: Example C
program

.globl b // function name

.type b, @function
b:

.loc 1 1 0 // line 1:

... // callee entry

.loc 1 2 0 // line 2:
movl 2, -8(%ebp) // t = 2
.loc 1 3 0 // line 3:
movl 8(%ebp), %eax // s0 = i
leal 3(%eax), %ebx // s1 = x + 3
call c // s2 = c()
addl %ebx, %eax // s2 = s2 + s1
movl %eax, -8(%ebp) // t = s2
.loc 1 4 0 // line 4:
... // callee exit
ret // return

Listing 2.2: Debug information in generated
Assembler code for Listing 2.1.

and performs actions and calculations according to the semantics of the interpreted
language. With this approach decisions can be deferred to the runtime of the program,
making it more dynamic and flexible.

Because the interpreter controls every part of the program’s execution, the execu-
tion state of the interpreted program can be completely independent from the under-
lying hardware and operating system, e.g. an interpreter might use a Spaghetti Stack
data structure for the call stack which, in contrast to the hardware stack, simplifies
resuming after exceptions etc.

On the one hand this means that the execution state can easily be accessed and
manipulated (as shown in Section 5.1.3), but on the other hand this also means that
the execution state can only be reified inside the program by explicit interaction with
the interpreter.

2.3.3 Virtual machines

Some languages have abstractions and concepts that require a virtual machine (VM)
for execution. A VM uses either compilation, interpretation or a combination of both
to execute code and additionally offers memory management, scheduling, foreign-
function interface, code management, etc.

2.3. HIGH-LEVEL LANGUAGES 7

Operating System

Client Program

Virtual Machine

Execution Engine Execution State

System Calls

e
x

e
c

u
t

e
s

Virtual Machine API

Legend

Component

Data

Read/Write Access

Interface Provider

Interface Dependency

Meta-programming

Figure 2.4: Basic virtual machine components

Execution Sate inside the VM

Depending on the language and the concrete implementation these additionally fea-
tures may affect the execution state of the running program, e.g. a program that called
a native function of the environment may be suspended while the VM is waiting for
the completion of the call.

Supporting multiple execution engines

More importantly, the combination of interpretation and compilation leads to chal-
lenges for execution state reification. VMs like the Java HotSpot [14] VM improve the
runtime performance of the program by just-in-time (JIT) compilation of repeatedly
executed (hot) loops to highly optimized machine code. This means that parts of the
execution state are tied to the hardware and operating system, similar to compiled lan-
guages (see Section 2.3.1), while other parts of the execution state are mainly managed
by the interpreter.

Sharing execution state between engines

The transition between different execution engines requires a conversion of parameters
and return values from one stack layout to another one which causes a performance
overhead. Additionally, users of the programming language should not be aware of
this optimization technique and would be surprised if the execution state is not reified
during the native execution of generated machine code.

8 CHAPTER 2. EXECUTION STATE

One solution would be to use exactly the same stack layout for both the interpreted
as well as the compiled execution. This, however, limits possible optimizations during
compilation. Ideally, the JIT compiler is able to use type information gathered during
runtime profiling or static analyzes, e.g. type inference, to generate code that omits
certain type checks and uses processor instructions operating on native values. The
interpreter, in contrast, makes no assumptions on the types and depends on type-tagged
values for every operation.

Another solution, proposed by the developers of Firefox JägerMonkey [15], was to
use two stacks. One of these two stacks would include everything shared by both the
compiled and the interpreted code, while type tags and other metadata can be held
on the other stack for use by the interpreter. Section 5.3 deals with this problem in the
context of JavaScript execution in a browser and describes the solution implemented
by the Lively debugger.

Chapter 3

Execution state in JavaScript

3.1 JavaScript language

JavaScript is an imperative, object-oriented, prototype-based [16], dynamically-typed
programming language with C-like syntax. The first JavaScript implementation was
included in the Netscape Navigator 2.0 in 1995 [7]. At first, JavaScript was primar-
ily used for simple scripts on web pages, e.g. validating input fields in forms, but
since then more complex applications were written in JavaScript even outside the web
browser, e.g. server-side code with node.js [17] or mobile applications with Callback [18].

A full description of the programming language is not subject of this thesis. The
purpose of this chapter is rather to point out key concepts and distinct features of the
language that are relevant to the following chapters.

3.1.1 Expressions and control flow

JavaScript has expressions with operator precedence which are similar to the expres-
sions of the C language and Java. But in contrast to many other languages, expressions
with questionable semantics do not raise an exception, cause an error state, or result
in undefined behavior. The JavaScript language is very permissive, error-tolerant and
uses special return values instead.

The examples in Table 3.1 illustrate how the weak type system of JavaScript auto-
matically convert operands, e.g. an empty array is converted to an empty string and
adding two empty strings is done by concatenation. However, there are also some ex-
amples in which types cannot be used interchangeably and generate errors, e.g. calling
a function by adding braces to an identifier, e.g.myFun() will fail if the type of myFun is
not a function. Also, referencing an undefined global variable will generate an error
rather than return undefined except if the expression is an assignment, e.g.myGlob = 1.

9

10 CHAPTER 3. EXECUTION STATE IN JAVASCRIPT

Expression Code Return Value

Division by Zero 23 / 0 Infinity

Zero divided by Zero 0 / 0 NaN

Modulo Zero 23 % 0 NaN

Accessing a non-existent property anObject.p undefined

Adding two undefined values undefined + undefined NaN

Adding two null values null + null 0

Adding two empty arrays [] + [] ""

Table 3.1: Faulty JavaScript expressions and their return values

There are also expressions with explicit control flow. For example the ternary oper-
ation will first evaluate the condition expression and then depending on the result
either evaluate and return the second or the third expression, e.g. return a>2?a:2.

3.1.2 Function calls

Functions are called using the same syntax as in C or Java. The major difference is,
that there are actually four different ways to call a function.

1. If the expression belonging to the function call is accessing the property of an
object, e.g.obj.method(), then the property will be treated as method of the object
and the keyword this will be bound to the object.

2. If the new keyword was used right ahead of the call, e.g.new Date(), then the
function is assumed to be a constructor and will be called with a new object
bound to this which will have the same prototype as the function to enable pro-
totypical inheritance.

3. The value of this can also be explicitly set by using the indirect function calls
apply or call.

4. In all other cases, the function will be called with this bound to the global object,
e.g. the browser window.

Another noteworthy characteristic of JavaScript in a browser environment is the event-
driven execution model. Conceptually there is always only one thread of execution
which runs inside the main event loop of the web page. This means that the web
page cannot be rendered and input cannot be handled during the execution of long-
running function calls. To prevent this from happening, the amount of computation
has to be limited and time-consuming functionality like input/output needs to be done
asynchronously. This also means that simply halting the execution within a function
call makes the web page completely unresponsive. Chapter 5 explores ways around

3.2. MAJOR JAVASCRIPT IMPLEMENTATIONS 11

this limitation and Section 7.2.3 discusses the potential consequences of breaking the
event-driven model.

3.1.3 Scoping

The previous section already explained the special dynamic scoping rules of this in
JavaScript. With that exception all other variable names have lexical scopes. This
means that the static position of the variable name in the source code with regard to
its definitions defines the variable binding.

The binding is done on function-level instead of block-level, so all uses of a variable
name within a function naturally refer to the same variable. This basically has the same
effect as hoisting all definitions to the top of the function as in Listing 3.1.

function f() {
return x; // ReferenceError: x is not defined

}

function g() {
return x; // No problem,
var x; // because x is defined down here

}

function h() {
var x = 0;
for (var x in {a:2}) {
// ...

}
return x; // Returns the string "a"

}

Listing 3.1: Scoping in JavaScript

The lexical scoping allows accessing the variables of the surrounding function even if
the function has already returned. The state of the variables is enclosed in the function
and thus makes it a closure. Listing 3.2 shows a closure whose state is not visible by
the rest of the code.

3.2 Major JavaScript implementations

In contrast to other VMs, JavaScript implementations used in browsers have very hard
latency requirements because the web page rendering is paused every time a JavaScript
snippet is encountered and needs to be parsed and evaluated.

12 CHAPTER 3. EXECUTION STATE IN JAVASCRIPT

function counter() {
var i = 0;
return function() { return ++i }

}
var count = counter(); // returns the closure
count(); // increments i
count(); // increments i again

// but there is no other way to access i anymore

Listing 3.2: Closures in JavaScript

The currently most popular open-source JavaScript implementations are JägerMonkey,
which is currently used by the Firefox browser, JavaScriptCore [19], which is part of
WebKit and used by the Safari browser, and V8 [20], the JavaScript engine of the
Chrome browser.

3.2.1 JägerMonkey

JägerMonkey [15] is the current JavaScript execution engine of the Firefox browser. It
uses a combination of interpretation and JIT compilation. Only repeated execution
of a function triggers compilation because the compilation process initially consumes
memory and time and improves performance only in the long run. Additionally,
certain JavaScript language features like eval are very hard to compile to native code.

Up until November 2011, Firefox also included a tracing JIT called TraceMonkey
which recorded traces through the code and generated native code for fast paths
based on the recorded traces. This proved to be less efficient than using a whole
method JIT compiler, which can also be applied to code with many trace and type
combinations [21], and led to JägerMonkey as the successor of TraceMonkey.

JägerMonkey uses a technique called inline threaded code which is similar to threaded
code [22] but inlines hand-coded assembly templates for each instruction of the in-
termediate representation (IR). These templates are not generated at runtime which
results in a shorter compilation time but also prevents optimizations across templates.
Additionally, only the common case gets inlined and must be protected by a guard
condition, typically a type check. To achieve this, all values are type-tagged by us-
ing a technique called NaN boxing [7, 23] and the type needs to be checked for each
instruction. Future generations of the Firefox JavaScript execution engine, like the pro-
posed IonMonkey, specifically target this problem by using static single assignment
(SSA) as IR and applying standard compiler optimizations like code motion, common
subexpression elimination and register allocation [7].

3.3. DEBUGGING 13

3.2.2 V8

The V8 JavaScript engine [20], which is used by Google Chrome and the open-source
Chromium, was developed under the technical lead of Lars Bak who also contributed
to other VMs, e.g. the Self and Strongtalk implementation, and the HotSpot Java VM.
This explains certain design decisions made in V8 and similarities between these VMs
like the polymorphic inline caching of V8 [24] which was first introduced in Self [25] and
tagged integers [23, 26] which are common in Smalltalk implementations [27].

In contrast to JägerMonkey and other JavaScript implementations, V8 does not use
an interpreter for code execution. Instead, every function in the JavaScript source code
is directly compiled to native code for the target platform. Sophisticated compiler
optimizations based on data-flow analysis and type inference are done on the level of the
abstract syntax tree (AST); no IR like bytecode is used.

JavaScript application run by V8 use the machine stack just like other compiled
programs (see Section 2.3.1). Due to the compilation, many abstractions of JavaScript
are lost on this low level of execution which means that metadata must be maintained
by the VM to reify the execution state. Furthermore, V8’s dynamic optimization tech-
niques like inline caching generate optimized code at runtime that does not correspond
to any JavaScript function in the source code.

3.3 Debugging

There are many tools available to support JavaScript application developers. Because
JavaScript is primarily used within browsers, JavaScript development tools are of-
ten interacting with a browser environment. This integration can either be achieved
by embedding a browser into the integrated development environment (IDE), e.g.
Eclipse [28], or by enhancing the browser with additional development plugins. Fire-
bug [29] and the Chrome developer tools [30] are examples of the latter and very
popular among JavaScript developers.

3.3.1 Firebug

Firebug is a plugin for the Firefox browser that provides Document Object Model
(DOM) inspection, dynamic HTML and Cascading Style Sheets (CSS) manipulation
as well as halting the JavaScript execution and debugging the scripts. There is also a
cross-browser version called Firebug Lite which uses only standard JavaScript appli-
cation programming interfaces (APIs) but has a limited feature set.

“Other features though are too dependent in browser internals and will not
be supported (at least in a near future), such as the Javascript debugger.”

Firebug Lite Developers [31]

14 CHAPTER 3. EXECUTION STATE IN JAVASCRIPT

Chapter 5 describes a solution to implement a cross-browser debugger without relying
on browser internals.

3.3.2 Logging

Without the help of debugging tools, JavaScript developers typically resort to log-
ging, also known as printf debugging due to the infamous C language function, to
display the runtime execution state. This requires inserting logging statements into
the source code and reading the output by using a JavaScript console, e.g. when using
the console.log interface, a logfile, message boxes with the alert function, or even
writing HTML to the current web page [32].

Chapter 4

Lively development tools

The Lively environment, also known as Lively Kernel, was originally developed at Sun
Inc. and has been documented by Ingalls et al. [9] among others. The source code and
a live public instance, called Webwerkstatt, is available at http://lively-kernel.
org/. The design and implementation of Lively are not subject of this thesis. Instead,
this chapter summarizes basic concepts of Lively that were applied to build a cross-
browser debugger on the basis of execution state reification.

4.1 The Lively environment

The dynamic nature of JavaScript, which is covered in Chapter 3, enables the user to
adapt and change a system at runtime. This means that the application can simulta-
neously be modified and executed which is not possible with compiled languages.

Such a development style is called exploratory programming and requires that the de-
velopment tools are part of the running system. This ultimately leads to an integrated
self-supporting environment [9] where there is no clear boundary between development
tools and running application [33].

Lively uses the ubiquitous JavaScript language which is available on every plat-
form and operating system. Therefore, in contrast to similar environments like
Smalltalk [34] or Self [35], Lively does not need to be installed locally, it does not
rely on plugins, and it has collaboration built in from the start with easy distribution,
deployment and upgrade of applications.

4.2 Class system

Despite the fact that JavaScript has a prototype-based inheritance, as mentioned in
Section 3.1.2, the Lively codebase is organized in classes and methods similar to the
class system in Smalltalk. Lively enables polymorphic inheritance by providing a

15

http://lively-kernel.org/
http://lively-kernel.org/

16 CHAPTER 4. LIVELY DEVELOPMENT TOOLS

pseudo variable named $super which automatically gets passed as an argument to
each method and enables invoking the implementation of the parent class.

Additionally, Lively uses a module system to group classes, extensions, etc. to-
gether into units which are loaded on demand and which declare dependencies. Un-
fortunately, browser vendors have not agreed on a standard for a module system yet,
so Lively uses a custom implementation similar to the proposal for CommonJS Mod-
ules [36].

module('games.Dice').requires().toRun(function() {
Object.subclass('games.dice.Game',
'initializing', {
initialize: function() { this.result = 0; }

},
'accessing', {
getResult: function() { return this.result; }

},
'gambling', {
rollDice: function(n) { this.result += Math.floor(Math.random() * 6 + 1); }

});
});

Listing 4.1: Dice.js: A module for a dice rolling game

A minimal Lively module consisting of one class with two methods, an instance vari-
able and a constructor is shown in Listing 4.1. Such a module is usually saved in a
file, e.g.Dice.js, and edited by using a system code browser as shown in Figure 4.1. The
source of a method, class or module can be browsed, edited, evaluated, and saved
back to a remote code repository. This enables seamless, collaborative web authoring
without external tools.

The system code browser supports syntax highlighting but there is still room
for improvement when it comes to static analysis, code generation, refactoring, auto-
completion, and static error detection like accessing uninitialized variables or unreach-
able code.

4.3 Morphic

For graphics and user interface generation, Lively uses a reimplementation of Morphic
which was first implemented in Self [37] and later ported to Squeak [38].

The actual rendering is abstracted from the developer, e.g. Lively used Scalable
Vector Graphics [39] (SVG) in the past, switched to the DOM and there are even plans
to support HTML5 Canvas.

4.3. MORPHIC 17

Figure 4.1: System code browser displaying the module in Listing 4.1

4.3.1 Writing Morphic applications

In Morphic, the whole graphical environment is composed of morphs which are ob-
jects with graphical appearance (shape, color), geometrical properties (position, size),
behavior (event handling, stepping, etc.), and submorphs (to create a scene graph).
Morphs can be manipulated visually as real objects, i.e. the user can pick up, move,
drop, resize and clone morphs at runtime [40].

System code browser

One way to write Morphic applications is to use the system code browser and create
classes following the same style API as in Listing 4.1. This is usually done by subclass-
ing Morphic classes, modifying its behavior with the template method pattern [41] and
using instance variables to store references to other morphs.

Object editor

Alternatively, Morphic applications can also be created without writing classes at all
by composing objects instead.

Simple geometrical shapes, widgets and even complex components, which are
stored in a collaborated PartsBin, can be used as templates and basic building blocks.
By composing and visually manipulating these objects an instance of the application
can be adjusted to fit the needs. Assigning names to morphs avoids the need for ref-
erencing instance variables, and visual connections replace callbacks and explicit event
handlers.

18 CHAPTER 4. LIVELY DEVELOPMENT TOOLS

Figure 4.2: Writing Morphic scripts with the object editor

Instead of using a system code browser dynamic behavior is added to morphs with
an object editor. As shown in Figure 4.2, a morph can have scripts attached which are
comparable to class methods but tied to a concrete morph instance. A morph with
all its properties, scripts and submorphs can then be stored in the PartsBin for use by
other users and developers.

4.4 Debugging

While the system code browser and the object editor target writing code, the developer
also needs tools to run and debug the code.

4.4.1 Logging

The simplest way to display the execution state is to add logging statements manually
into the code which has been discussed in Section 3.3.2. Lively offers a logging API to
display messages and errors both in the Lively user interface as well as on a separate
console window.

It is also possible to trace the execution without altering the code by using method
wrappers which can also measure the execution time and are discussed in Section 5.3.1.

4.4.2 Displaying execution state

Lively provides a hierarchical object inspector and a call stack viewer which can be
used to inspect the state of objects and call stacks. These tools, however, are only
available as long as the system is not currently executing a function due to the restric-
tions given in Section 3.1.2.

4.4. DEBUGGING 19

4.4.3 Observing execution

Ideally, Lively would also be able to halt the program at any given point in the source
code, inspect the execution state with all the tools described in the previous section,
and resume the execution step-by-step like other systems with fully integrated tool
support, e.g. Squeak [38].

Prior to this thesis, this was only possible by using browser-specific tools like Fire-
bug (see Section 3.3.1). These tools do not benefit from the other Lively tools and are
not aware of the Lively module system which results in inaccurate source code loca-
tions, method names etc.1 Fortunately, cross-browser execution state reification makes
it possible to implement these missing debugging tools (see Section 6.7 and 6.7.5).

Figure 4.3: Hierarchical object inspector

1There are efforts to get a better integration of dynamically evaluated code and custom languages into
browsers by the user of source maps [42]

20 CHAPTER 4. LIVELY DEVELOPMENT TOOLS

Chapter 5

Partial interpretation

In order to provide sophisticated development tools for Lively, including a debugger,
the execution state of a running JavaScript program needs to be reified. The best way to
achieve this is to access the execution state at the level of the JavaScript VM. However,
as of today there is no unified cross-browser API to access the execution state of the
underlying JavaScript VM directly because implementations like JägerMonkey and V8

follow different approaches of executing JavaScript (see Section 3.2) and therefore have
different execution state representations.

This chapter outlines different ways to reify the execution state and enable debug-
ging in Lively despite these differences by not depending on a concrete JavaScript
implementation.

5.1 Interpreting JavaScript

Without making any assumptions about the underlying implementation of the lan-
guage, it is still possible to have an explicit execution state if the code in question is
executed by a client VM on top of the host VM. Such a client VM targets the same
language it accepts as input which influences the implementation of the its execution
engine and memory management.

5.1.1 Execution engine

When choosing between the two strategies for executing code, compilation and inter-
pretation, interpretation is preferable because it is easier to implement and enables
accessing the execution state on a higher level of abstraction (see Section 2.3.2).

Both the client VM and the host VM execute JavaScript but from now on the client
VM will be referred to as interpreter and the host VM will simply be called JavaScript
VM.

21

22 CHAPTER 5. PARTIAL INTERPRETATION

A simple interpreter would parse JavaScript source, convert it into a semantically
equivalent IR, e.g. an AST or bytecode, which can be either register- or stack-oriented,
and then execute one AST node or bytecode instruction at a time by performing the
appropriate actions.

Except for the interpreter itself all the code must be interpreted in order to have an
explicit execution state that does not rely on the JavaScript VM.

JavaScript VM

Execution State

Interpreter

Execution State

e
x

e
c

u
t

e
s Browser API

e
x

e
c

u
t

e
s

Lively Kernel

Debugger

Debugging API

Figure 5.1: Using an interpreter on top of the JavaScript VM to enable execution state
reification. This diagram uses the same notation as Figure 2.4.

5.1.2 Memory management

In order to support high-level language features a VM provides abstractions for state
and data that are implemented on top of the target platform and operating system.
There is usually a substantial amount of complexity involved in this mapping, but a
VM that runs on top of the same language it executes is able to delegate almost all of
the abstractions directly to the underlying platform.

Since the interpreter itself is written in JavaScript and executes JavaScript code, it
can reuse the memory management, the data structures, and most of the built-in func-
tionality like type conversion and primitive operations from the browser’s JavaScript
VM. This significantly simplifies the implementation of the interpreter.

5.1.3 Accessing the execution state

Except for shared objects, like the global namespace, the execution state of the inter-
preted JavaScript code is completely separated from the actual JavaScript VM imple-

5.2. LIMITING THE SCOPE OF INTERPRETATION 23

mentation. Because the interpreter controls every aspect of the execution state, it can
also provide an interface for the interpreted program to access its own execution state
(see Figure 5.1) and thereby achieve execution state reification.

5.2 Limiting the scope of interpretation

The approach given in the previous section works well but also introduces a consid-
erable performance penalty for the whole system. The execution state is necessary for
debugging but irrelevant for other use cases which will run significantly slower and
not benefit from the interpreter.

Following the general practice of optimizing for the common case, it would be
better to run code natively on the JavaScript VM as long as the execution state is not
accessed. This requires the code executed by the interpreter to seamlessly integrate
with the code executed by the JavaScript VM and vice versa. The execution state of
the interpreted code will be available for debugging purposes while the rest of the
code runs fast on the JavaScript VM. This partial interpretation is depicted in Figure
5.2.

JavaScript VM

Execution State

Interpreter

Execution State

e
x
e
c

u
t
e
s

Lively Kernel

interpreted codenative code Debugger

e
x
e
c

u
t
e
s

e
x

e
c

u
t

e
s

Debugging API

Browser API

Figure 5.2: By interpreting parts of the Lively environment the debugger is able to
access the execution state of the interpreted code at runtime. This diagram
uses the same notation as Figure 2.4.

5.2.1 Identifying relevant execution state

The difficulty now lies in deciding which portions of the code need execution state
reification. There is no way to generally anticipate the program’s and user’s intent

24 CHAPTER 5. PARTIAL INTERPRETATION

but it is often sufficient for debugging purposes to let the user decide when to enable
interpretation. For example, with native execution being the default execution mode,
the following rules could be used to trigger a transition into the interpretation mode.

• Functions containing source code breakpoints, i.e.debugger statements, will al-
ways be interpreted regardless whether the breakpoint will actually be reached
or not.

• When code is explicitly evaluated by the user, it will be executed either natively
or by the interpreter depending on the keyboard command used to trigger the
evaluation.

• Certain user-initiated events, like mouse button clicks while holding a special
debug button, will cause the interpreter to execute the associated event handler
instead of the JavaScript VM.

• Morphs, objects, classes or whole namespaces can be marked as debugging sub-
jects whose scripts and methods are always interpreted.

• Code that was just written by the user and has never been executed before is
more prone to bugs than other parts of the system. By using the interpreter
for its very first execution errors can be reported with more details about the
execution state than otherwise.

5.2.2 Debugging scope generally undecidable

The last rule in the previous section refers to one of the most common debugging
use cases: halting the execution when a critical error or unhandled exception occurs.
Ideally, the user would be able to inspect the detailed execution state of the faulty
statement, the surrounding function, and all the stack frames above. But this is only
possible if the interpreter was used for the function as well as all the functions calling
it. According to Rice [43], there is no general way to decide whether a function will
result in error prior to evaluating it, and therefore the on-demand interpreter cannot
debug all general errors. This fundamental problem always occurs whenever a user or
a debugging tool needs to make a distinction between faulty and correct code:

“The user can’t make the decision about whether to see the details of an
expression if he or she doesn’t know whether this expression contributes to
the bug. This leaves the user in the same dilemma as the instrumentation
tools – they must have a reasonable hypothesis about where the bug might
be before they can effectively use the debugging tools!”

Lieberman and Fry [44]

5.3. EXECUTION STATE OUTSIDE INTERPRETER 25

5.3 Execution state outside interpreter

If any of the rules listed in Section 5.2.1 applies and the execution switches to interpre-
tation mode, the execution state available to the user for debugging purposes will be
limited to the stack frames executed by the interpreter. It might be possible to display
function names and approximate line numbers by using non-standard browser APIs
but information about local variables and intermediate computation results will be
lost.

Due to the event-driven model of JavaScript, the natively executed stack frames
had already been terminated by the time the user interacts with development tools on
the web page. This means that the user can step through the interpreted portion of
the code and resume its execution but natively executed stack frames are generally not
resumable.

To complement the interpreter and support execution state reification for natively
executed code, techniques like method wrappers and source code transformations can be
used.

5.3.1 Method wrappers

Method wrappers follow a relatively simple principle and are common in languages like
Smalltalk [45, 46]. They change the reference to the original method in the method
lookup table of the target class to a wrapper that executes code before and after the
invocation while having access to the arguments and the return value.

Therefore they are ideal for implementing aspect-oriented programming, context-
oriented programming (COP), tracing and profiling. By not modifying the JavaScript
source, they can even be used for built-in functions not implemented in JavaScript.
Compared to interpretation, the performance overhead caused by method wrappers
is small enough that it is feasible to instrument every part of the Lively environment.

The main drawback of method wrappers is the lack of information about local
variables and intermediate computation results. In the context of debugging, method
wrappers are primarily used to produce an accurate stack trace, including passed
arguments, without using non-standard browser APIs.

5.3.2 Source code transformations

Source code transformations are based on the idea of modifying the JavaScript code in
a way that implicit inaccessible execution state becomes explicit and is not lost upon
termination of a function.

A simple implementation would insert JavaScript statements at the entry and be-
fore all exits of every instrumented function. This enables tracing of function calls
with arguments and return values in a similar way as the method wrappers described
above.

26 CHAPTER 5. PARTIAL INTERPRETATION

For more complete execution state reification, more source code transformations need
to be applied. For example, local variables can be captured by inserting customized
tracing code at the right locations. Tracing on a sub-statement level, e.g. tracing the
left part of a binary expression, can be done by decomposing these expressions into
SSAs. This would also yield information about intermediate computation results but
requires sophisticated transformations similar to those done by a full JavaScript com-
piler. Section 9.1 explores this approach in detail.

5.3.3 Rebuilding Stack

Information about the execution state prior or outside of the interpretation can be
valuable during the debugging process.

An example is a user who observes that a function is unintentionally executed
multiple times. This user can then set a breakpoint to force interpretation. This will
reveal detailed information about the currently executing stack frame but not about
the calling functions.

Another example, which was mentioned before, concerns the debugging of un-
handled exceptions. If interpretation was not triggered in advance of the exception,
then only techniques like method wrappers and source code transformations would
be available for the user to find the bug.

Apart from just displaying the calling functions to the user, the execution state out-
side the interpreter can also be further processed. Traced stack frames with function
calls, local variables, and a PC make it possible to rebuild a complete runtime stack
which can then serve as input data for the interpreter. This enables the user to resume
and step through stack frames even if they were not executed by the interpreter in the
first place.

Chapter 6

Implementation

To validate the ideas presented in the previous chapter, we implemented a debugger in
Lively that uses partial interpretation combined with method wrappers for execution
state reification.

This chapter documents the architecture and relevant design decisions alongside
the issues we encountered during the implementation and the solutions we have cho-
sen.

6.1 Restricting JavaScript

The ability to debug JavaScript affects the system in many different ways. The very
first issue, which must be taken into account when implementing the Lively debugger,
is the language itself. Some features of JavaScript are just very difficult to support, oth-
ers make execution state reification with partial interpretation impossible. Therefore
certain restrictions apply to Lively code to make debugging possible.

6.1.1 Scoped variables

JavaScript’s static lexical scoping enables closures accessing state that is otherwise
not accessible anymore (see Section 3.1.3). This means that a closure created by the
JavaScript VM cannot be executed by the interpreter because it is unable to access the
internal variable binding of the JavaScript VM.

Closures are used by Lively in many different places, e.g. to bind the pseudo vari-
able this to a certain object in a function independently of the actual receiver, to wrap

a function with another function or to curry1 one or more arguments of a function.
Additionally, the polymorphic inheritance of the Lively class system uses closures to
bind the $super pseudo argument to the parent method in the class hierarchy.

1Currying creates and returns a new function which behaves like the original function but one or
more of its arguments are bound to certain values.

27

28 CHAPTER 6. IMPLEMENTATION

In all these cases the variable binding does not need to be hidden. Our solution was to
change the closures returned by bind, wrap and curry to have an explicit variable map-
ping that can be accessed by the interpreter. In general, closures can be used in Lively
as long as the closure object implements the method getVarMapping(); otherwise the
interpreter would not be able to debug them.

6.1.2 Other language features

There are also a few other JavaScript language features that have the potential to break
the interface between interpreter and native code because they are so powerful.

function example1() {
var obj = {};
Object.defineProperty(obj, "prop" , {get: function(){debugger}});
return obj.prop; // will not halt execution

}
function example2() {
with({a:3}) {
console.log(a); // "a" is undefined

}
}
function example3() {
var a = 3;
eval("function f(){return a}");
console.log(f()); // "a" is undefined

}
function example4() {
return a(); // "a" is undefined
function a() { return 3; };

}

Listing 6.1: JavaScript language features which are not supported by the interpreter.

1. JavaScript objects are usually used as map or dictionaries that store values un-
der a string key. However, it is also possible to define properties with meta-
programming, e.g.Object.defineProperty [47], which allows custom get and set

functions. The interpreter is not aware of these special properties and will not
execute the get and set functions.

2. There are special scoping rules for JavaScript code inside a with block [48], i.e.
the lookup for variable names will also consider named properties of the object
provided in the with head. This syntactic sugar would make the scoping im-

6.2. PARSING 29

plementation of the interpreter much more difficult and its use was therefore
discouraged in Lively.

3. One of the most powerful JavaScript features is the eval function [49, 50]. It
allows arbitrary JavaScript code to get dynamically executed. The impact of
the code is hard to foresee which means that the interpreter needs to consider
various corner cases in order to implement eval without breaking the clean sep-
aration between native and interpreted code. The dynamic evaluation of code
cannot be completely prevented because Lively depends on it for its browser-
based development tools, but it should be used in as few places as possible.

4. Furthermore, the JavaScript scoping rules allow declarations to get implicitly
hoisted (see Section 3.1.3), which is often confusing and can easily be avoided
by declaring variables prior to using them. Therefore the interpreter does not
support implicit declaration hoisting.

6.2 Parsing

With the language available to the application developer being restricted, the next
step is to actually parse the program source and construct an AST suitable for further
processing.

The parser itself is written in OMeta [51] which is a pattern matching language
based on Parsing Expression Grammars [52]. OMeta was first implemented in Squeak
and later rewritten in JavaScript by Warth [53]. The parser creates a tree representation
of the source code which consists of nested lists with the first entry of each list begin
an identifier for the type of the element. A second OMeta grammar then converts
theses lists into an object-oriented AST. This second grammar, the classes of the AST
nodes, and a dummy AST visitor are automatically generated from a set of rules in
the SourceGenerator. Figure 6.1 illustrates this process.

6.2.1 Language extension

The parser adds an additional debugger keyword to the JavaScript language. This key-
word is an stand-alone statement which does not affect the semantics of preceding and
following statements. The purpose of the debugger statement is to tell the execution
engine to halt the execution at this point and let the user inspect the execution state
with a debugger. This way, breakpoints become part of the actual source code which
has several disadvantages, e.g. potential unintended sharing of breakpoints between
developers and violation of the separation of concerns principle [54] due to mixing of

30 CHAPTER 6. IMPLEMENTATION

function b(i){
return i + 3;

}

func

i

begin

return

binop +

get i

number 3

:Function
args = ["i"]

:Sequence

:Return

:BinaryOperation
name = "+"

:Variable
name = "i"

left

:Number
value = 3

right

expr

children*

body

Figure 6.1: JavaScript source is parsed to generate nested lists which in turn are trans-
formed to an AST. We use the list and pointer notation by Newell and Shaw
[2] and the Unified Modeling Language (UML) [3] (UML) Object Diagram
notation for the AST.

6.3. INTERPRETATION 31

domain code with debugging concerns. However, this way of setting breakpoints is
also common in Smalltalk environments2.

6.3 Interpretation

The core component of the implementation is the interpreter. It evaluates the AST and
provides execution state reification.

6.3.1 Evaluating the abstract syntax tree

An interpreter can either use a simple list or a tree as input. The list has advantages
for bytecode instructions and branching but we used the AST as input because that
way the implementation required less code for most of the operations.

An example AST is shown in Figure 6.1 as result of the parsing process. In gen-
eral, sequential execution on a tree representation can be done as part of a depth-first
traversal. Exceptions to this rule are conditions, which omit branches, and loops,
which traverse branches multiple times3.

The tree traversal is done by using the visitor pattern [41] with the interpreter im-
plemented as visitor. As an example, Listing 6.2 shows how the interpreter visits a
BinaryOperation node like i + 3.
Listing 6.2 also shows how abstractions in the JavaScript language are delegated to the
underlying JavaScript VM. The left node of the binary operation could be a variable
with a string value. In that case, the value yielded by accept would be a JavaScript
string and the plus operator + would automatically convert the second operator, e.g.3,
to a string and then concatenate both values. Reusing all these semantics results in a
much easier memory management implementation (see Section 5.1.2) and the under-
lying VM’s speed for executing parts of the interpreted program.

A few elements in the JavaScript language are syntactic sugar and can be trans-
formed to other elements without loss of generality. Two such examples are given in
Table 6.1. Reducing the set of different AST node types by applying these transfor-
mation also reduces the implementation size of the interpreter which makes the code
easier to maintain and to optimize. This is why most production VMs apply several
transformations before handing the resulting AST to an interpreter or compiler. Run-
time performance is not a primary concern for our interpreter, therefore it consumes
the AST without any transformations.

2Squeak provides a halt method for all objects which means that statements like self halt work
as textual breakpoints.

3The for loop is noteworthy for its update clause which appears prior to the loop body in the source
code but is executed after the loop body which inverts the usual AST node execution order

32 CHAPTER 6. IMPLEMENTATION

lively.ast.Visitor.subclass('lively.ast.InterpreterVisitor',
'visiting', {
visitBinaryOp: function(node) {
var frame = this.currentFrame;
var leftVal = this.visit(node.left);
var rightVal = this.visit(node.right);
switch (node.name) {
case '+':
return leftVal + rightVal;

/* other operators ... */
default:
throw new Error('No semantics for binary op ' + node.name)

}
}

} /* other methods ... */
);

Listing 6.2: Simplified source code of the visitBinaryOp method of the interpreter.

Before Transformation After Transformation

return ++i; return (i = i + 1);

for (init; condition; update) {
body;

}

init;
while (condition) {
body;
update;

}

Table 6.1: Conversion of special JavaScript abstractions to equivalent abstractions with
greater generality.

6.4. BREAKPOINTS 33

6.3.2 Scoping

Each function call in the interpreter creates a new stack frame which has its own
variable mapping. This mapping is dynamically adjusted as the interpreter encounters
new variable declarations. As explained in Section 3.1.3, the pseudo-variable this has
its own scoping rules, every other variable name is looked up by following the scoping
chain. This chain simulates lexical scoping by recursively defining the outer scope of a
function to be the surrounding stack frame at the time the function literal is evaluated.
The corresponding implementation is shown in Listing 6.3.

Named functions, e.g.function myfun(){ return 23; }, are special because the
function name will also be added to the variable mapping of the current stack frame.
This has practically the same effect as a variable declaration with an anonymous func-
tion literal, e.g.var myfun = function (){ return 23; }.

Setting the lexical scope of a function to the currently executing stack frame means
that, upon termination of the function, its stack frame can still be referenced by func-
tions defined during its execution. In fact, this is exactly how we implemented clo-
sures.

lively.ast.Visitor.subclass('lively.ast.InterpreterVisitor',
'visiting', {
visitFunction: function(node) {
var frame = this.currentFrame;
if (node.name) frame.addToMapping(node.name, node);
node.lexicalScope = frame;
return node.asFunction();

},
} /* other methods ... */

);

Listing 6.3: Implementation of closures by retaining the reference to the surrounding
scope in the visitFunction method of the interpreter.

6.4 Breakpoints

One of the most important features of a debugger is the ability to set breakpoints which
cause the execution of the program to halt. Breakpoints are always tied to a particular
location in the source and trigger right before the statement, line of code or expression
will be executed. There are also watchpoints and catchpoints [11]. Watchpoints trigger
when the state of a variable changes to a certain value or a general query regarding the
execution state of the program evaluates to a positive result. By combining the query
of a watchpoint with a source code location of a breakpoint, a so-called conditional

34 CHAPTER 6. IMPLEMENTATION

breakpoint can be created. Catchpoints are similar to watchpoints and trigger when a
certain exception is thrown regardless of the source code location.

6.4. BREAKPOINTS 35

The implementation of breakpoints in the interpreter was straight-forward because
the interpreter can simply stop interpreting at any point during the execution. As
described in Section 6.2.1, breakpoints can be set with the debugger statement which
becomes an AST node visited by the interpreter. The implementation is shown in
Listing 6.4.

Object.subclass('lively.ast.Visitor',
'visiting', {
visitDebugger: function(node) { // do nothing },

} /* other methods ... */
);
lively.AST.InterpreterVisitor.subclass('lively.AST.ResumingInterpreterVisitor',
'visiting', {
visitDebugger: function(node) {
this.currentFrame.putValue(node, 1); // mark this 'debugger' as visited

// so it will be skipped when resuming
this.currentFrame.halt(node, true);

},
} /* other methods ... */

);

Listing 6.4: Visiting explicit breakpoints, i.e.debugger statements, in the interpreter.

One major problem arises with our approach of partial interpretation when native
functions are on the call stack at the time the execution halts. The JavaScript VM does
not provide any means of pausing the execution of these functions, therefore halting
the interpretation will return the control flow from the interpreter back to these native
functions in either of two ways.
The interpreted code could return normally and use a special return value to signal a
premature termination. Unfortunately, this requires the caller of the interpreted code
to pay attention to return values which would be a very invasive change since the
interpretation mode is triggered dynamically for arbitrary parts of the code.

The other option is to terminate the execution abnormally by throwing a custom
exception. This has the advantage that calls will only return a value if the execu-
tion successfully terminates. Nevertheless, this is still a leaky abstraction because
try-catch blocks around the call will then handle the exception. If the code in the
exception handler does not differentiate between a real exception and halting the ex-
ecution, it could unintentionally follow an error protocol, e.g. closing file handles or
even retry the call. Additionally, finally blocks will get executed regardless of the
type of the exception. All these problems need to get solved on a source level which
makes the Lively debugger less useful for general purpose JavaScript code.

36 CHAPTER 6. IMPLEMENTATION

6.4.1 Stepping

When the execution gets suspended at a breakpoint, the user can inspect the execution
state of the program. To observe the changes in execution state over time, the debugger
has to provide the means to resume the execution and halt again after a certain interval
has passed. This step-by-step debugging, also known as stepping, is supported in many
state-of-the-art debuggers and also a motivating use case for execution state reification.

The stepping was implemented by having an AST node functioning as a temporary
breakpoint, denoted by the bp instance variable, which is saved in the stack frame. The
interpreter triggers a halt as soon as it encounters or passes the bp4. This behavior can
be seen in Listing 6.7.

var a = 23;
var b = f(a + g());
return b;

Listing 6.5: Statement stepping halts
before assigning b

var a = 23;
var b = f(a + g());
return b;

Listing 6.6: Expression stepping halts
before calling g()

The size of the step interval is also noteworthy. Compiled languages traditionally
use source code lines because there is no one-to-one mapping between AST nodes of
the high-level language and the generated code which is often highly optimized. We,
however, use the same language for source and target and are therefore free to choose
an interval that best suits the user’s needs. In most languages one line of code roughly
corresponds to one statement. The statement is therefore a familiar unit of stepping for
users of other debuggers. Alternatively, expressions could also serve as a more fine-
grained unit. The disadvantage of using expressions is unnecessary halting, e.g. when
evaluating literals which do not change the observable execution state. The difference
between expression stepping and statement stepping is also shown in Listing 6.5 and
6.6.

The current implementation uses statements as primary stepping interval. How-
ever, there are a few exceptions, e.g. the condition of an if statement, which is an
expression but causes the execution to halt when stepping, and the end of a function,
which is not a real AST node but denotes the imminent exit and thus also causes the
execution to halt when stepping. When a function regularly terminates, the debugger
will halt at the next statement after the call in the calling function.

4This is necessary in case of a conditional statements because the breakpoint would be set to the then
branch but the interpreter should also halt if the else branch is executed instead.

6.4. BREAKPOINTS 37

Object.subclass('lively.ast.Interpreter.Frame',
'resuming' {
setPC: function(node) {
// advance the PC of this stack frame to the given node
// if the node is a sequence, set PC to first statement of sequence
// otherwise "firstStatement()" just returns the given node
this.pc = node.firstStatement();
// halt if the PC is at or past a breakpoint
if (this.isBreakingAt(node)) this.halt();

},
isBreakingAt: function(node) {
// returns true if the interpreter should halt
// when evaluating the given node
if (this.bp === null) return false; // no breakpoint
if (this.bp === node) return true; // breakpoint at this node
return node.isAfter(this.bp); // execution past the breakpoint

},
},
'stepping', {
haltAtNextStatement: function() {
// find next statement right after the current PC
var nextStmt = this.pc.nextStatement();
if (nextStmt) {
// and set a breakpoint at the next statement
this.bp = nextStmt;

} else {
// if there is no statement after the current pc
// then the last statement has been reached
// so halt at the function termination
this.bp = this.getFuncAst();

}
},
stepToNextStatement: function(haltAtCalls) {
// set breakpoint to next statement
this.haltAtNextStatement();
// resume execution
return this.resume(haltAtCalls);

},
}

);

Listing 6.7: Implementation of breakpoints and stepping

38 CHAPTER 6. IMPLEMENTATION

6.4.2 Descending into function call

The stepping behavior described above is mainly concerned with the source code of a
single function. As soon as another function is called, the debugger should either treat
the call like all other AST nodes and halt at the next statement after the call, or change
the debugging focus to the source code of the called function, halting at the very first
statement of the called function. The former steps over a call while the latter is steps
into the call. We implemented this by setting a meta-breakpoint which halts every time
a function is called regardless of the concrete source code location.

As an interesting consequence of the partial interpretation approach, this meta-
breakpoint causes the function to always get interpreted. So, stepping into a call inter-
prets it, while stepping over a call uses shallow interpretation by default, i.e. it executes
the function natively.

6.5 Resuming execution

Given a basic interpreter as outlined in the previous two sections, the next step towards
debugging is to enable resuming program execution.

6.5.1 Program counter

There are many different ways to stop the program execution. Resuming, however, is
only possible if the saved execution state includes all information necessary to restart
the execution at the exact location it stopped.

Many interpreters use a flat IR as input, i.e. a non-nested list of primitive IR ele-
ments like bytecode instructions. This has the advantage that a numerical index into
the list can be used to denote the currently executed element. Branching to another
element is done by updating the index to another value; sequential execution simply
means to count the index up which explains the term program counter (PC).
Our interpreter has no numerical PC since it uses the AST rather than a one-
dimensional IR. The PC is simply the AST node which is currently evaluated by the
interpreter. The path from this node to the root of the AST includes all nodes whose
evaluation is in progress. Resuming the execution means to resume the evaluation
of the PC node and continuing with all the other nodes in this path until finally the
evaluation of the root node is completed or the execution halts again.

6.5.2 Resuming with numerical program counter

It would be possible to have a numerical PC by assigning sequential numbers to all
AST nodes in a canonical traversal order. These numbers can also be thought of as
an index into the postorder linearalized, flat abstract syntax tree. Figure 6.2 shows an
AST and its corresponding numbering scheme.

6.5. RESUMING EXECUTION 39

function
6

begin
5

return
4

+
3

i
1

3
2

id 1 2 3 4 5 6

node i 3 + return begin function

Legend

already evaluated

evaluation in progress

program counter

Figure 6.2: Depth-first postorder AST linearization of the code shown in 6.1.

For a given program counter pc, all nodes with id < pc have already been evaluated,
all nodes with id > pc are either currently in execution or going to be, and the node
with id = pc is the node at which the execution should resume.

The implementation is outlined in Listing 6.8. The simple interpreter without re-
suming capabilities was subclassed to create a resuming interpreter with a slightly dif-
ferent traversal algorithm. If the method wantsInterpretation() of the current stack
frame returns true for the visited node, it will be evaluated, otherwise the evaluation
of the node will be skipped.

The normal execution does not need to keep track of the pc, so it is set to null. This
causes line 11 in Listing 6.8 to return true which in turn results in normal evaluation
of the node.

If the execution is suspended, the pc holds the index to the node which caused
the execution to halt. An example of this situation can be seen in Figure 6.2 which
depicts the suspended execution at pc = 2. Upon resuming the execution the tree
traversal will be restarted from the root of the AST and the index of each visited node
will be compared to the pc (see Listing 6.8, lines 10 to 20). The interpreter will skip
nodes with smaller indices, e.g. the variable i in the example shown in Figure 6.2), and
evaluate nodes with greater indices, e.g. the return statement in the example, until the
interpreter recursively descends to the AST node with id = pc at which point the
normal execution resumes.

The problem of this approach is that intermediate computation results are stored
on the stack of the JavaScript VM during the tree traversal. This behavior can be seen
in Listing 6.2. The value returned by the evaluation of the left branch is stored in a
temporary variable, which resides in the JavaScript VM’s stack, at the time the right
branch is evaluated. If a node in the right branch causes the execution to halt, the
value stored in the temporary variable will be lost. It is still possible to resume the

40 CHAPTER 6. IMPLEMENTATION

1 Object.subclass('lively.AST.Interpreter.Frame',
2 'resuming', {
3 isResuming: function() {
4 return this.pc != null;
5 },
6 resumesNow: function() {
7 this.pc = null;
8 },
9 wantsInterpretation: function(node) {

10 if (!this.isResuming()) {
11 return true; // normal execution mode
12 }
13 var nodeIdx = node.astIndex();
14 if (nodeIdx < this.pc) {
15 return false; // this node was already evaluated
16 }
17 if (nodeIdx === this.pc) {
18 this.resumesNow(); // switch to normal execution mode
19 }
20 return true; // evaluate this node
21 // (it is either the PC or on the AST path to the PC)
22 },
23 } /* other methods ... */
24);
25 lively.AST.InterpreterVisitor.subclass('lively.AST.ResumingInterpreterVisitor',
26 'visiting', {
27 visit: function($super, node) {
28 if (this.currentFrame.wantsInterpretation(node)) {
29 // call 'visit' of the non-resuming interpreter
30 return $super(node);
31 }
32 return true; // do not visit this AST node and return default value
33 },
34 }
35);

Listing 6.8: Resuming implementation based on a numerical PC.

6.5. RESUMING EXECUTION 41

execution by following the algorithm described above which will skip the evaluation
of the left branch since it was already computed. However, skipping the evaluation
means to return true, as shown in line 32 of Listing 6.8, which the interpreter treats
as the evaluation result of the left branch. The actual binary operation will most likely
return a different result compared to the uninterrupted execution because the original
value for the left branch is lost. Recomputing the left branch is also not an option
because its evaluation might cause side effects which will then be unintentionally
repeated.

6.5.3 Storing intermediate results

We solved the problem mentioned above by storing the return value of each visited
AST node in the stack frame. This causes the garbage collector to deal with a lot more
references, but the memory usage is only slightly increased since no new objects are
created.

A plain JavaScript object serves as dictionary for storing the computed values. Un-
fortunately, only strings can be used as dictionary keys in JavaScript so the computed
values are stored under the string representation of the node’s location in the source
code of the function5.

Object.subclass('lively.AST.Interpreter.Frame',
'resuming', {
getValue: function(node) { return this.values[node.position()]; },
putValue: function(node,v){ return this.values[node.position()] = {val: v}; }

} /* other methods ... */
);
lively.AST.InterpreterVisitor.subclass('lively.AST.ResumingInterpreterVisitor',
'visiting', {
visit: function($super, node) {
var value = this.currentFrame.getValue(node);
if (!value) {

value = this.currentFrame.putValue(node, $super(node));
}
return value.val;

}
}

);

Listing 6.9: Resuming implementation based on stored intermediate results.

If there is a stored value for an AST node, it was already evaluated and will be
skipped, otherwise it will be normally evaluated and the return value stored. The im-

5For example the number literal AST node 3 in the expression i + 3 would have the key "4-5"

42 CHAPTER 6. IMPLEMENTATION

plementation of this approach is shown in Listing 6.9. Because the evaluation can yield
arbitrary values, including null, the stored values need to be boxed6. Additionally, in
order to support loops which execute parts of the AST more than once, the computed
values of node in the loop bodies need to get removed after each complete iteration.

6Alternatively, the function hasOwnProperty could be used to differentiate between stored
undefined literals and cache misses.

6.5. RESUMING EXECUTION 43

In contrast to the previous approach there is no difference anymore between normal
execution and resuming a suspended function. Therefore it is unnecessary to maintain
a PC during execution.

An important drawback of this approach is that it requires significantly more infor-
mation for resuming the execution7. Rebuilding the stack from data gathered outside
interpretation, as described in Section 5.3.3, is therefore harder to implement. Only
transformations that expose intermediate results, e.g. compilation to SSAs, can provide
all the details the interpreter needs to resume the execution (see Section 9.1).

6.5.4 Interpreter call stack

The previous sections mainly dealt with resuming execution of a single stack frame.
In order to implement a tracing debugger for Lively, the interpreter also needs to be
able to return from function calls when resuming. This is different from resuming
during its normal execution because the interpreter can take advantage of the native
stack of the JavaScript VM for function calls and returns as long as the execution was
not halted.

function a() { b(); }
function b() { c(); debugger; }
function c() { debugger; }

Listing 6.10: JavaScript functions calling each other. The debugger statement in b()

causes it to get executed by the interpreter.

1. 2. 3. 4.
...

a() a() a() a()

b() b() b()

c() c()

halt()

Legend

native
stack frame

interpreted
stack frame

Figure 6.3: Combined native and interpreter call stack at different points in time dur-
ing the execution of Listing 6.10.

Figure 6.3 shows the relationship between the runtime stack of the JavaScript VM
and the interpreter. As the function call b() is evaluated, the interpreter will create
a new interpreter stack frame for b and evaluate the AST of b in a new stack frame
on the JavaScript VM. If the function terminates normally, its value will be returned
by the visit function and is immediately available to the interpreter. This causes the

7For the approach described in Section 6.5.2 the numerical PC was sufficient.

44 CHAPTER 6. IMPLEMENTATION

evaluation of the binary operation in Listing 6.2 to work as expected even if the left
branch is actually a function call.

This behavior changes as soon as the execution halts during the evaluation of a call.
In fact, we implemented the halt() function in a way that all the currently interpreted
functions will be suspended. Resuming a complete call stack can now be done in two
different ways: either starting at the top-most or at the bottom-most stack frame.

In Figure 6.3, resuming at the bottom would restart b()8 which in turn recursively
descends to the stack frame of the callee, c(), and resumes its execution. When c()

terminates, the execution continues with b() as if the evaluation of c() had never been
interrupted. This process is shown in Figure 6.4

5. 6. 7. 8. 9.
...

resume resume resume resume resume

b() b() b()

c()

Legend

native
stack frame

interpreted
stack frame

c

b

Figure 6.4: Combined native and interpreter call stack at different points in time after
resuming the execution in Figure 6.3 following a bottom-up approach.

8The function c() cannot be resumed because it was natively executed.

6.5. RESUMING EXECUTION 45

Another way to resume a call stack is to start with the top of the stack and resume its
execution. This is shown in Figure 6.5. When c() terminates, the interpreter has to
look up the caller of c to find that b is still suspended and needs to be resumed with
the return value of c.

5. 6. 7. 8.
...

resume resume resume resume

c() b()

Legend

native
stack frame

interpreted
stack frame

b

c

Figure 6.5: Combined native and interpreter call stack at different points in time after
resuming the execution in Figure 6.3 following a top-down approach.

We implemented the top-down approach because it optimizes the common case while
having a similar complexity as the bottom-up approach. The ability to halt and resume
execution is particularly useful for stepping which only concerns the top-most stack
frame most of the time. Because of this common use case, we assume that the amount
of code executed after a halt is either very small, because there will be a breakpoint
immediately after the previous one, or the code will just resume without hitting any
further breakpoints. For the latter case, there is no difference in the time spent for
resuming execution between these two approaches. For the former case, the bottom-
up method always traverses all AST nodes of all stack frames in the call stack, while
the top-down method focuses on the top-most stack frame and only considers the rest
of the call stack when the function returns. Listing 6.11 shows the implementation.

lively.ast.Interpreter.Frame.prototype.resume = function() {
// resume by traversing the AST and skipping already evaluated nodes
var result = this.getFuncAst().resume(this);
// if there is a calling stack frame and it is suspended
if (this.getCaller() && this.getCaller().isResuming()) {
// save the return value of this stack frame
// as evaluation result of the currently executed AST node
// (the call node in the calling stack frame)
this.getCaller().putValue(this.getCaller().pc, result);
// and resume the calling stack frame
return this.getCaller().resume();

}
// either the caller was not interpreted or not suspended
// so simply return to the next stack frame in the JavaScript VM's stack
return result; };

Listing 6.11: Resuming the interpreter call stack with the top-down approach.

46 CHAPTER 6. IMPLEMENTATION

6.6 Native Code

The ability to halt and resume execution is generally limited to code executed by the
interpreter. However, there are certain functions that the interpreter cannot execute
because they are not implemented in JavaScript. Some of these functions provide an
interface to browser APIs, others are part of the language definition and implemented
in a compiled language for performance reasons.

function foo() {
var list = [1,2,3];
debugger; // outer breakpoint BP1
list.forEach(function(e) {
alert(e);
debugger; // inner breakpoint BP2

});
};

Listing 6.12: Array iterator each is native but takes a user function as callback.

Listing 6.12 shows an example of a JavaScript code calling a native function. Without
the breakpoints BP1 and BP2, the function foo() will just iterate through the list and
output 1,2 and 3. However, enabling these two breakpoints yields different debugging
behavior depending on the implementation strategy.

6.6.1 Single interpreter call stack

The simplest possible implementation would be to execute native functions and all
functions they call, including user-defined callbacks, without the interpreter. This
means that the breakpoint BP1 causes the execution to halt and additional stepping
would just pass over the forEach call since there is no way to halt at the start of it and
the provided callback will also get executed natively. The inner breakpoint BP2 will
not be evaluated but ignored by the interpreter.

6.6.2 Nested interpreter call stacks

Another approach is to enable debugging for callbacks, etc., by executing them in
a new debugging context. This means that the callback is unaware of calling stack
frames, e.g. in Listing 6.12 the stack frame for the callback will not know about the
stack frame for foo() even though it was also interpreted. In the end, this has the
effect that both breakpoints BP1 and BP2 in the example will work, but using them
both together might spawn two debugger instances, one which halts at BP1 but cannot
step into the native function, and one which halts at BP2 but cannot return to any
calling stack frame.

6.6. NATIVE CODE 47

We implemented this approach by wrapping all function literals evaluated by the
debugger, which also includes anonymous functions used as callbacks, in a way that
calling these functions natively spawns a new interpreter to execute them in a new,
independent call stack. If they are called by the interpreter, a normal stack frame will
be created instead which becomes part of the existing caller chain.

6.6.3 Unified call stack

It would be possible to extend the behavior described in the previous section to have
a single combined call stack even if certain stack frames are native. These native stack
frames can still not resume but, nevertheless, the user experience of the debugger
improves compared to the two previous approaches. The major obstacle in imple-
menting a unified call stack without additional tracing support is the need to identify
the relationship between different call stacks which are separated by native code.

6.6.4 Method wrappers

An alternative strategy for implementing a unified call stack is to instrument the native
code in a way that function calls can be traced and this trace can be used as a basis
for chaining multiple native and interpreted stack frames. Source code transforma-
tions cannot be used because the native functions are not implemented in JavaScript,
so we applied method wrappers, which were described in Section 5.3.1, to trace all
function calls including those of native functions like forEach. Method wrappers are
not enabled by default because the instrumentation process is very invasive and takes
a lot of time but once they are installed, call stacks also include natively executed stack
frames including their arguments and the name as well as the source of the executed
function if available.

6.6.5 No native code

A completely different approach is to abolish all native functions except for a few
primitives that interact with the environment and do not call user-provided callbacks.
This can be done by reimplementing built-in functions in JavaScript. For example, a
custom Array.forEach can be implemented as shown in Table 6.2.

Surprisingly, the custom forEach written in JavaScript actually runs faster than
the native implementation. This observation was also made by others who provided
custom implementation for forEach and bind [55]:

“The point of this test is to show that by creating your own custom forEach-
lite implementation you can get better performance over native.”

John-David Dalton [56]

48 CHAPTER 6. IMPLEMENTATION

Code Average time per test run
Firefox 11.0 Chrome 19.0

Setup

var values = [];
for (var i = 0; i < 100; i++){
values[i] = i;

}

– –

Test

var sum = 0;
foreach(values, function(i) {
sum += i;

});

– –

Native
function foreach(list, cb) {
list.forEach(cb);

}
39.7µs ± 0.33% 4.59µs ± 0.42%

Custom

function foreach(list, cb) {
var l = list.length;
for (i = 0; i < l; i++) {
cb(list[i]);

}
}

3.9µs ± 0.72% 3.84µs ± 0.71%

Table 6.2: Performance comparison of native Array.forEach and custom forEach.

In fact, Andreas Gal from Mozilla mentioned a possible transition from native code to
JavaScript in the Firefox browser and predicted a massive speedup for some operations
by using JavaScript over C++ [7].

6.7 Lively Integration

In order to make execution state reification and resumable execution actually usable,
we implemented a debugger that integrates into the Lively environment. The devel-
opment was done on a live instance publicly available on the web. Therefore we had
to be careful not to affect other users’ Lively experience in a negative way, e.g. by
introducing a performance penalty or breaking existing code. This was achieved by
using COP and grouping all overriding changes to the system in layers. Depending
on user preferences, Lively starts with certain debugging layers enabled by default but
all these features can also be activated and deactivated on demand.

6.7. LIVELY INTEGRATION 49

6.7.1 Debugger statement

As shown in Section 6.4, the interpreter will halt at debugger statements. The problem
with partial interpretation now is to force interpretation of functions containing these
debugger statements or else the execution will not halt at these breakpoints.

We have already shown that it is not always possible to determine the debugging
scope perfectly. So, instead of reliably triggering the interpretation mode for every
function that has a debugger statement, we chose to ignore breakpoints from unknown
origins, focusing on breakpoints the user set intentionally by writing a debugger state-
ment and saving the script or method. This was implemented as a layer overriding
the methods addScript() and addCategorizedMethods() of the Lively class and Mor-
phic system. The function written by the user will be wrapped in the same way as
mentioned above in case a traversal of the function AST detected a Debugger node.

6.7.2 Debug selection shortcut

In an exploratory programming environment like Lively the user regularly executes
snippets of code to change something in the system or to quickly test a few lines of
code. We can support the user by additionally providing the ability to observe the
execution of this code snippet.

This was implemented by adding an additional keyboard shortcut to all text
morphs that triggers the evaluation of the selected code snippets with the interpreter
which halts right at the first statement to allow stepping. Text morphs can be tied to
a certain context, e.g. the text morphs of the object editor and the object inspector use
the object edited or inspected as context. When debugging code typed into these text
morphs, the pseudo variable this will still point to the original object.

6.7.3 Test runner

Lively also features a unit testing framework for test-driven development [57] (TTD)9.
Tests cannot prove the absence of bugs but they define expected behavior of the code
in a way that these expectations can be tested automatically and thereby reveal bugs
in the software. Debugging code written with TTD therefore always includes finding
the reason a test failed.

In order to support the developer, we enhanced the Lively test runner with the
possibility to run the test code with the interpreter. This enables inspection of the call
stack at breakpoints, unhandled exceptions, and failed assertions, alongside the ability
to step through the test run.

In contrast to the default mode of execution, the debug mode of the test runner
triggers interpretation mode for the whole test run. This can be thought of as a deep

9In fact, the implementation of the interpreter was done with TTD

50 CHAPTER 6. IMPLEMENTATION

interpretation as opposed to a shallow interpretation which falls back to native execu-
tion for all function calls beyond the first. This introduces a significant performance
overhead for the test run (see Section 7.3) and should therefore only be used when ex-
ecution state reification is needed, e.g. for showing a complete call stack after a failed
test run.

One unsolved issue is whether to abort the execution of the test suite when the
debugger halts or whether to suspend the test suite itself, so it can be resumed later.
We implemented the former because the test framework currently not supports asyn-
chronous reporting of test results which would be necessary to suspend a running test
suite.

6.7.4 Global error handler

Another obvious use case is to give the user the ability to debug errors, i.e. unhandled
exceptions, as soon as they occur.

Without execution stack reification, Lively still defaults to displaying a red box on
the screen, summarizing the error message and giving a hard-to-read textual call stack.
However, code executed by the interpreter and functions instrumented by method
wrappers, attach additional information to the exception which can be used by a global
error handler to create a call stack and display it inside a debugger window to the user.

The debugger offers an improved user interface compared to an error message box
but its ability to resume the execution is rarely useful. The user can restart a stack
frame but that does not answer the question as to what happened right before the error
occurred [44]. Ideally, the debugger would be able to execute the function backwards
in time (see Section 8.2).

6.7.5 Debugger user interface

Figure 6.6 displays the user interface of the debugger. It is entirely composed of
Morphic widgets, therefore it can be stored in the PartsBin and loaded on demand
into a running Lively environment.

The debugger is a Morphic window with a title bar showing the initial event that
triggered the debugger, typically an error message or a failed assertion during a test
run.

The upper part of the debugger is the frame list which displays the call stack.
Each line consists of the function or method name, if available, and a special tag for
native, not-resumable stack frames. This part is very similar to the traditional call
stack viewer in Lively [9].

The action bar is a row of buttons for resuming, stepping and restarting the
execution of the currently selected stack frame. At the moment, the buttons are simply
labeled but future versions of the debugger might provide icons following the video
recorder metaphor [58] to play, pause, rewind and fast-forward execution.

6.7. LIVELY INTEGRATION 51

1

2

3

4

5

Figure 6.6: Debugger user interface displaying native and interpreted stack frames

The source view displays the JavaScript function corresponding to the current stack
frame. It is important to note that this view is unaware of the defining class or module
of the function. So, unlike the system code browser, changes to the function’s source
code cannot be saved. If the stack frame is executed by the interpreter, the current PC
is highlighted in red and the user is able to select code snippets and evaluate them
by using keyboard shortcuts. This is basically possible with all text morphs in Lively
but code evaluated in the source view additionally has access to all variables of the
current stack frame which enables the user to inspect and even modify the execution
state of the stack frame.

Finally, the variables list displays variables bindings of the selected stack frame. If
the stack frame was executed by the interpreter, this includes all variables of the stack
frame including local variables. If the stack frame was executed natively but instru-
mented with method wrappers, only arguments passed to the call and the receiver of
the method call, this, are shown. Primitive values like numbers and strings can be
displayed inline but inspecting other variable values, like arrays or complex objects,
requires the user to click on the list entry which brings up the Lively object inspector.

52 CHAPTER 6. IMPLEMENTATION

Chapter 7

Discussion

This chapter discusses the consequences of partial interpretation and our concrete
implementation in Lively on the system as a whole and particularly on the debugging
user experience. Additionally, the Lively debugging tools are evaluated in terms of
the restrictions they impose on the developer and their runtime performance.

7.1 Restrictions with partial interpretation

The goal of this work was to achieve execution state reification in a way that it can
be used to implement a debugger for Lively. We reached this goal by making certain
design decisions and compromises that affected the universality of this approach. It
would be possible to implement a general purpose debugger by running the complete
system on top of the interpreter. Unfortunately, the performance overhead would
be unbearable and cripple the Lively user experience, so we built a light-weight on-
demand debugger with partial interpretation instead. The resulting implementation
does not offer execution state reification for all possible JavaScript programs due to its
assumptions about the system.

7.1.1 Language restrictions

First of all, certain exotic features of the JavaScript language are not supported because
they are incompatible with partial interpretation, difficult to implement, rarely used
by the developer, or considered bad style. Some of them will be rejected by the parser,
like code blocks used as part of an expression; others are simply not implemented in
the interpreter, like the with statement.

Additionally, use of the eval function, while not completely prohibited, is still
discouraged because of its potential to behave differently for interpreted and natively
executed code. The same is true for try, catch and finally. They can still be used
but the developer needs to be aware that the execution of the try block might get

53

54 CHAPTER 7. DISCUSSION

suspended by the interpreter which causes an exception to propagate though all native
stack frames, incorrectly triggering their catch and finally blocks.

7.1.2 Explicit variable bindings in closures

The most predominant problem of partial interpretation is the use of closures. A
closure that was created by native code and that accesses variables of its outer scope
introduces inaccessible execution state for the interpreter.

Suppressing the use of closures is not an option due to their important role in
JavaScript language. Our solution was to expose the variable bindings of all closures
in a uniform way so that they are recognized by the interpreter. This change needs to
get applied to the whole system, even though closures will not cause any problems
most of the time. Usually, either both the closure and the surrounding function get
executed natively or they are both interpreted. But in the unlikely event that the
closure gets interpreted while its outer scope was executed natively, the interpreter
has no way to detect the broken variable reference and will either fail to resolve it or
in the worst case silently return a shadowed variable as in Listing 7.1.

i = 3; // global variable
function counter() {
var i = 0; // private variable
return function() { // returns the closure
return ++i // referencing the private variable

}
}
var native = counter();
var interpreted = native.forInterpretation();

// turns on interpretation mode for the closure
interpreted.call(); // returns '4'

Listing 7.1: Inaccessible variable binding in natively executed code results in wrong
variable lookup by the interpreter.

7.1.3 System organization

We used method wrappers to enable primitive execution tracing when interpretation
is not possible, e.g. when executing native code, or when the interpretation mode was
not triggered in advance, e.g. when an unhandled exception occurs.

The method wrapper itself has no requirements regarding the wrapped function,
but reliable tracing is only possible when all functions of the system are wrapped.
This obviously requires that the system knows about all functions currently in use.
In an arbitrary JavaScript program this requirement might be hard to fulfill but in

7.2. LIMITS OF THE LIVELY DEBUGGER 55

Lively we have the advantage that the whole codebase is is structured into classes
with methods on the one side, and morphs with scripts on the other side. Without
this system organization method wrappers are ineffective for this type of tracing.

Method wrappers are not as invasive as source code transformations but they still
instrument the system in a way that might affect functions that depend on meta-
programming. While invocations of method wrappers are transparent to the caller, the
source code of a method wrapper, which can be obtained with the toString method,
does not represent the source code of the original method.

7.2 Limits of the Lively debugger

The partial interpretation approach and its implementation also influence the func-
tionality of the debugger.

7.2.1 Debugging without interpretation

As a direct consequence of the interpreter approach, the debugger is limited to code
written in JavaScript. Built-in functions like Array.forEach() cannot be suspended or
resumed which impairs the debugging experience, especially if these functions call
user-provided callbacks. Section 6.6 proposed possible solutions to this problem.

Another obvious problem is the discrepancy between first class interpreted code
and second class natively executed code. For interpreted code the debugger displays
the exact location the execution halts, it shows all local variables, and it supports
stepping with the buttons in the action bar. For natively executed code, however, none
of these features are available. Even with tracing enabled, only the source code of the
called function and the arguments are shown. This may frustrate the user in cases
where interpretation cannot be manually controlled, e.g. when debugging unhandled
exceptions or when inspecting natively executed stack frames of a suspended function.

7.2.2 Compatibility with meta-programming

Debugging with partial interpretation and method wrappers can also cause conflicts
with other applications using meta-programming. Our implementation uses COP,
closures and wrappers in a transparent way but certain Lively tools need to be aware of
these instrumentations in order to work correctly. For example the Lively serialization
mechanism, which is used to store morphs in the PartsBin, should serialize the original
methods rather than the wrappers created by the debugger to trigger interpretation
mode. On another note, changes to the codebase, like new classes or methods added
to the system, also need to become instrumented to ensure continuous reliable tracing
with method wrappers.

56 CHAPTER 7. DISCUSSION

7.2.3 Concurrency

There are also more subtle consequences of the partial interpretation approach like
the pseudo-concurrency introduced by the ability to halt and resume the execution of a
function.

The scope of the concurrency is very limited because it only applies when the de-
bugger halts a function that makes multiple changes to a shared global state. Usually,
it is guaranteed that all these changes are committed before the execution of any other
code continues. This is not true for the interpreter because it may suspend a computa-
tion halfway through its execution. Whether that actually causes a problem depends
on the concrete application.

One common issue with this kind of concurrency among others is the handling
of user input. In a single-threaded application, halting the user interface thread also
halts processing input events. This is important to inspect the execution state without
further influencing it. However, the interpreter needs to resume the user interface
thread because it is also used for the interface of the Lively debugger itself. A typical
example of this issue is drag and drop. Dropping a morph needs to be atomic; either
the morph is dropped onto another one or it is still attached to the mouse cursor. When
halting code executed during the drop process the morph may be still attached to the
cursor. Interacting with the debugger, e.g. by clicking on the step over button, will then
cause the dragged morph to get dropped on the debugger. A possible solution to this
problem is discussed in Section 8.1.1.

7.3 Performance evaluation

Many compilers and VMs support two different modes of execution: development
(debug) and production (release) mode. The first focuses on debugging support and
the second on runtime performance. Lively is a system targeted at both users and
developers, therefore it is important to combine debugging facilities with runtime
performance.

We ensured that users who do not use the debugging tools are not affected by
loading the code of the debugging tools only on demand. Additionally, users of the
debugging tools will not notice a performance overhead as long as they do not trigger
interpretation, e.g. by setting breakpoints, or enable tracing. All these features are
implemented as COP layers which can be activated and deactivated dynamically.

When all the debugging features like stepping and tracing are used, a decrease
in execution speed cannot be prevented. Performance is not a main objective of this
thesis, so this section will not go into details and argue about a few percent of increased
runtime performance due to missing optimization. Rather this is about the order of
magnitude of the implementation’s runtime performance. A factor of 1000 makes

7.3. PERFORMANCE EVALUATION 57

the difference between a system with an unnoticeable performance overhead and an
unusable system.

7.3.1 Interpretation

With the partial interpretation approach only a small portion of the code is executed
by the interpreter. Therefore we prioritized simplicity over runtime performance. No
profiling was done and even obvious optimizations were omitted, e.g. each function
call causes the interpreter to parse the called function’s source code due to a missing
code cache.

We evaluated the runtime performance of the interpreter with two different bench-
marks. The first one executes a single function with a simple summing loop. The exact
test code and the measured times are shown in Table 7.1.

As expected, the interpreter executes code considerably slower. In fact, we mea-
sured a slowdown factor of about 58 000 (Firefox) / 129 000 (Chrome) compared to
native execution.

In addition to the micro-benchmark we also measured the runtime of a typical
Morphic method to see how the interpreter performs when executing a more realistic
example. This time, multiple nested function calls are involved which means that
there are actually two different modes of operation: either function calls beyond the
first are executed by the JavaScript VM, i.e. shallow interpretation, or nested function
calls recursively get interpreted, i.e. deep interpretation. The results are shown in Table
7.2).

The purpose of shallow interpretation is to limit the performance overhead in cases
where interpretation offers no advantage over native execution, e.g. when stepping
over a function call in the debugger. In the benchmark it ran 12.4 (Firefox) / 12.8
(Chrome) times faster than deep interpretation and 326 (Firefox) / 531 (Chrome) times
slower than native.

In conclusion, there is a massive performance overhead when executing code with
the interpreter, especially for loops and computationally intensive code. JIT compilers
of modern browsers produce very efficient code that runs multiple orders of magni-
tude faster than an interpreter traversing the tree representation of the program on
top of the underlying JavaScript VM. Nevertheless, the gap between native and inter-
preted execution narrows considerably for more complex user interface code as shown
in the second benchmark. Even for deep interpretation the slowdown factor decreases
to 4 042 (Firefox) / 6 825 (Chrome).

7.3.2 Method wrappers

We also measured the performance overhead introduced by tracing. Tracing was im-
plemented with method wrappers (see Section 6.6.4), therefore it has no effect on the
micro-benchmark in Table 7.1. However, tracing does effect the performance of the

58 CHAPTER 7. DISCUSSION

Code Average time per test run
Firefox 11.0 Chrome 19.0

Setup

var test = function() {
var sum = 0;
for (var i=0; i < 100; i++){
sum += i;

}
return sum;

};

– –

Native 723ns ± 0.25% 796ns ± 12.1%

Interpre-
tation

test = test
.forInterpretation();

42.2ms ± 0.71% 103ms ± 0.9%

Table 7.1: Micro-benchmark with native and interpreted code.

Code Average time per test run
Firefox 11.0 Chrome 19.0

Setup

var test = function() {
$morph("Rectangle")
.rotateBy(0.1);

};

– –

Native 143µs ± 2.36% 80µs ± 2.29%

Method
Wrappers

lively.Tracing
.installStackTracers()
.startGlobalDebugging();

399µs ± 1.2% 221µs ± 0.24%

Shallow
Interpre-
tation

test = test
.forInterpretation();

46.6ms ± 2.84% 42.5ms ± 0.36%

Deep
Interpre-
tation

DeepInterpretationLayer
.beGlobal();

test = test
.forInterpretation();

578ms ± 4.93% 546ms ± 3.95%

Table 7.2: Morphic benchmark with native, instrumented and interpreted code.

7.3. PERFORMANCE EVALUATION 59

Morphic-benchmark given in Table 7.2. We observed an increase in the runtime by
factor of 2.79 (Firefox) / 2.76 (Chrome). This slowdown is noticeable by the user but,
in contrast to interpretation, it does not render the system unusable.

In addition to an increased runtime, method wrappers also consume memory and
time for installation. Instrumenting all methods in a typical Lively environment with
250 classes and 5 623 methods takes 2 240 ms (Firefox) / 949 ms (Chrome) which is
not an issue if it happens just once but unacceptable for frequent activations and
deactivations.

There is still room for improvement for the tracing implementation. In contrast to
interpretation, tracing is intended to be used by default. As such, it needs to have a
minimal impact on the user experience. Two different ideas for improving the tracing
implementation are given in Section 9.3 and 9.1.

60 CHAPTER 7. DISCUSSION

Chapter 8

Related work

Debugging plays an important role in software development and the corresponding
debugging tools have been in use for decades now. Unsurprisingly, there has been
a lot of research about the future directions of debugging tools in general and for
debugging for dynamic languages like JavaScript in particular. This chapter points
to noteworthy related work done in the context of JavaScript debugging, omniscient
debugging and declarative debugging.

8.1 JavaScript debugging

Most of the JavaScript development tools currently in use, like the Firefox plugin
FireBug which was described in Section 3.3.1, are modeled after existing tools of other
programming environments. Two interesting properties of JavaScript that make it an
interesting topic for future research in debugging are, firstly, the unusual user interface
API, which interacts with the browser by manipulating the DOM, and, secondly, its
use as mobile code [59] for the web, i.e. programs written in JavaScript are distributed
as source code directly to user’s browser.

8.1.1 Record and replay

The single-threaded, event-driven execution model of JavaScript also affects the user
interface (see Section 7.2.3). A possible solution to this problem is to break the strong
binding of the user interface handling and the associate JavaScript code. On the one
hand, this is necessary to interact with the web page without unintentionally triggering
additional events that could affect the debugging process, e.g. by clicking a button in
the action bar of the debugger interface. On the other hand, this also enables injecting
events into the system for debugging purposes without actually having to manually
repeat the triggering action in the user interface.

61

62 CHAPTER 8. RELATED WORK

Tools for programmatically interacting with the web page are common for unit and
integration testing like Selenium [60]. Oney and Myers [61] proposed a system called
FireCrystal that aims at debugging user interactions. It uses the browser-internal API
of Firefox to record the user interface events and later replays these events alongside
the executed source code. This is especially useful for debugging complex user in-
teractions, like drag and drop, without manually interacting with the web page. A
similar solution called Mugshot was presented by Mickens et al. [62] which works
across multiple browsers and recreates the execution state of a JavaScript application
on another machine. All non-deterministic JavaScript events, including new Date(),
which returns the current time, are recorded on the user machine and replayed on the
developer machine in a way that browser-specific debuggers, like FireBug, can be used
in conjunction with Mugshot to debug the user input events.

8.1.2 End-user development

Due to its use as mobile code in web applications JavaScript is an ideal candidate for
end-user development. Exploratory programming environments like Lively greatly
benefit from the possibility to load and execute source code at runtime without rely-
ing on external tools like compilers. The challenge at hand is to provide an intuitive
user interface that enables users, who do not have a strong programming background,
to create small applications or scripts. Lively is a suitable host for these systems and
early prototypes like Fabrik [63, 64] already went into the right direction. A differ-
ent approach to the same problem was presented by Victor [65] who proposes a live
programming environment that makes all changes to the code immediately visible ei-
ther by simultaneously displaying the graphical output or by showing example inputs
to a function and their data flow. In this way JavaScript programs can be visually
debugged without stepping through the execution.

8.2 Omniscient debugging

The quote in Section 5.2.2 mentioned the fundamental problem that the chain of events
leading to an observable failure is not known in advance; neither by the user nor the
debugger. An interesting solution to this problem with active research is omniscient
debugging, i.e. debugging back in time [66, 67]. In contrast to normal debugging, it
allows accessing past execution state which influences the runtime performance and
memory consumption of the execution depending on the implementation strategy.

8.3. DECLARATIVE DEBUGGING 63

8.2.1 Logging

The most straight-forward approach is to keep a change log. Some implementa-
tions like the Omniscient DeBugger by Lewis [66] or JHyde by Herrmanns [68] store
all changes to the execution state including changes to local variables of a stack frame.
The advantage is the precise execution state accurately recreated from the log whilst
the drawback is the slowdown factor of 10 to 300 and the memory consumption of 100

MB per second [66].
Another possibility is to limit the log to non-deterministic events. This is very

similar to the record and replay approach mentioned above, but in languages other than
JavaScript this non-determinism can also be the result of concurrency. Deterministic
replay of a concurrent system requires changes to the default thread scheduling on
the VM level, as presented by Christiaens et al. [69]. While having a low memory
footprint, this approach requires repeated execution of the program in order to step
back in the debugging process.

8.2.2 Snapshots

Alternatively, omniscient debugging can also be implemented by taking snapshots dur-
ing the execution of the program. Many different solutions have been implemented
ranging from software-transactional memory to worlds [70]. Snapshotting is typically
done on the VM level to make use of the garbage collector [71] and have full control
over the periodicity and accuracy of the snapshots. The overhead in terms of runtime
performance and memory consumption varies accordingly and sometimes it can even
be adjusted to the needs of the developer, e.g. the QVM by Arnold et al. [72] allows
the user to assign a performance budget to the VM that will be spend on debugging
capabilities.

8.3 Declarative debugging

A completely different approach is declarative debugging. Instead of reifiying the run-
time execution state, declarative debugging focuses on distinguishing faulty code from
correct code. This can be done on the basis of static analysis, e.g. by detecting reads
of uninitialized variables, user queries, e.g. by having a dynamic query-based debug-
ger [73] or using a query language like PQL [74], or slicing which can be done either
dynamically or statically and involves manual feedback from developer about the cor-
rectness of certain parts of the program [75]. Declarative Debugging itself is not closely
related to the work on the Lively debugger, but Herrmanns [68] showed that a tradi-
tionally tracing debugger can be complemented with declarative debugging features
to create a hybrid debugger.

64 CHAPTER 8. RELATED WORK

Chapter 9

Future Work

The partial interpretation approach was successfully implemented and can be used
to debug Lively programs. This chapter discusses variations and future extensions to
partial interpretation which were not implemented yet but which could provide addi-
tional features or remove some of the restrictions described in the previous chapter.

9.1 Source code transformations

We implemented tracing of non-interpreted code with method wrappers. Alterna-
tively, source code transformations can be used to instrument the code and enable
tracing (see Section 5.3.2). This section shows possible implementation strategies and
to what degree they reify the execution state.

9.1.1 Simple call tracing

To achieve the same results as with method wrappers, it would be sufficient to replace
all function calls with a trapped version of these calls. If the function call throws an
exception then the current source code location, the arguments, and the local variables
of the caller’s stack frame are saved in the exception object, as shown in Listing 9.3.

function f() {
var a = 1;
return a + g();

}

Listing 9.1: Example JavaScript
program

function f() {
var a = 1; // var a = 1
var _t0 = a;
var _t1 = g();
var _t2 = _t0 + _t1;
return _t2; // return a + g()

}

Listing 9.2: Listing 9.1 in SSA form

65

66 CHAPTER 9. FUTURE WORK

Stack.prototype.addFrame = function(func, astIndex, locals) {...};
function f() {
var a = 1;
try {
var result5_g = g() // pc = 5

} catch(e) {
e.stack = e.stack.addFrame(f, 5, {a:a});
throw e;

}
return a + result5_g; // return a + g()

}

Listing 9.3: Transformed source code of Listing 9.1 to capture local variables

By doing this, the call stack can be reified without interpretation. However, the stack
frame which triggered the exception as well as the intermediate computation results
cannot be reified this way which means that the interpreter is not able to resume its
execution.

9.1.2 Execution state reification

By applying more sophisticated source code transformations, the execution state can
be reified in a way that the interpreter is able to seamlessly take over the execution.
This would provide all benefits of interpretation at a dramatically reduced perfor-
mance penalty.

However, this requires that all intermediate results, e.g. the results of evaluating
the two branches of a binary operation, are saved in local variables and that the exact
source code location of the currently evaluated expression is known on a sub-statement
level.

A straight-forward solution to both of these problems is eliminate expressions in
JavaScript by compiling expressions into SSA form prior to their execution on the
JavaScript VM as shown in Figure 9.2. SSAs do not have intermediate results and are
executed atomically. A numerical PC that increases with each assignment works best
in this case because it accurately denotes the currently evaluated part of an expression
or statement. Additionally, each assignment is a JavaScript statement and can be
wrapped in a try-catch block which will be dynamically generated to save all relevant
local variables and intermediate results to the current stack frame. An example of this
kind of source code transformation is given in Listing 9.4.

9.1. SOURCE CODE TRANSFORMATIONS 67

function addFrame(func, pc, locals,temps) {...};
function f() {
try {
var a = 1; // pc = 0

} catch(e) { e.stack.addFrame(f, 0, {},{}); throw e }
try {
var _t0 = a; // pc = 1

} catch(e) { e.stack.addFrame(f, 1, {a:a}, {}); throw e }
try {
var _t1 = g(); // pc = 2

} catch(e) { e.stack.addFrame(f, 2, {a:a}, {0:_t0}); throw e }
try {
var _t2 = _t0 + _t1; // pc = 3

} catch(e) { e.stack.addFrame(f, 3, {a:a}, {0:_t0,1:_t1}); throw e }
try {
return _t2; // pc = 4

} catch(e) { e.stack.addFrame(f, 4, {a:a}, {0:_t0,1:_t1,2:_t2}); throw e } }

Listing 9.4: Transformed Listing 9.2 to reify the complete execution state using SSAs

There are two major drawbacks to this approach. The first is the implementation com-
plexity of the nontrivial transformation from JavaScript expressions to SSAs which is a
typical compiler task. And the second is the increase in code size and the correspond-
ing performance overhead.

An alternative to the SSA form is to store intermediate computation results directly
within the expressions. This is possible because assignments in JavaScript can be
used inside expressions and always return the assigned value. When an exception is
thrown, the source code location of the currently executed expression can be detected
by analyzing which keys in the _v dictionary were set and which were not. This
approach has the advantage that intermediate computation results are stored in the
exact same format that the interpreter uses (see Section 6.5.3). Listing 9.5 shows an
example of the generated code using this approach.

function f() {
var _v = {};
try {
// var a = 1;
var a = (_v["26-27"] = 1);
// return a + g();
return _v["37-44"] = (_v["37-38"] = a) + (_v["41-44"] = g());

} catch(e) { e.stack.addFrame(f, {a:a}, _v); throw e} }

Listing 9.5: Transformed Listing 9.1 to reify the complete execution state by using a
value dictionary instead of SSAs

68 CHAPTER 9. FUTURE WORK

Overall, source code transformations a superior to method wrappers and should re-
place them in the future to enable execution state reification for non-interpreted code
and generally improve the debugging user experience.

9.2 Omniscient debugging

Section 8.2 already mentioned the trend towards omniscient debugging. It would be in-
teresting to see how the partial interpretation approach can be applied to omniscient
debugging. Runtime performance and memory consumption are blocking a wider
adoption of omniscient debugging but both of these problems can be solved by follow-
ing the same approach as partial interpretation and restricting the scope of debugging
to interesting code instead of persisting the complete execution state history.

One possible implementation strategy would be to continuously take snapshots,
e.g. at each function call. Stepping back can then be implemented by reverting to
the snapshot and restarting execution of the current stack frame until the desired
breakpoint right before the last PC is reached. Alternatively, an event log could be held
for each side effect performed during a function call. When restricted to interpreted
function calls, this approach enables the debugger to step back in time with a very
limited performance overhead.

9.3 Advances in browser technology

JavaScript currently undergoes a transition from a web scripting language to a general-
purpose language for all kinds of applications. Along with this transition, the browser
becomes an application platform which has to fulfill the developers’ demand for ad-
equate tools and APIs. There are already features in discussion which would make
the browser more open for developers, e.g. the proposal for source maps [42] which
specifically targets dynamically evaluated and compiled code.

As more developer APIs become wide-spread available across different browsers,
Lively tools like the debugger can leverage these features to interact with the under-
lying JavaScript VM. There are existing examples of such APIs, e.g. Python offers the
sys.settracer function to hook custom code into the interpreter which will be called
for each operation, similarly the java.lang.instrumentation package in Java offers
several ways to monitor the code [76, page 199]. Until these APIs are standardized for
JavaScript, we make trade-offs to offer the best possible cross-browser development
and debugging experience sacrificing performance and usability.

9.4. PERSISTENT DEBUGGING CONTEXT 69

9.4 Persistent debugging context

The Lively debugger depends on stack frames that were either created by the in-
terpreter or generated during tracing. These stack frames handle arbitrary data at
runtime including references to closures or other kinds of functions. This means that
there is no easy way to serialize these stack frames and load them at a different point
in time or on a different machine.

This breaks the design principle of Lively of having persistent worlds which can
be personalized, shared and hold their state. When saving a Lively world during a
debug session, the debugger window itself will be serialized including all its contents
but resuming the execution, stepping or accessing other stack frames is impossible.

In addition to the ability of having debugging sessions lasting longer than the web
page lifetime, serialization also allows the live migration of a running JavaScript script
across multiple browser instances and multiple machines. This technique is often
used in virtualization to keep software system available during hardware failures or
upgrades.

Furthermore, a serialized representation of a stack frame could be send to a
web worker [77] which runs in the background independently of the user interface
JavaScript thread and is able to make blocking calls which natively halt its execution.
By doing this, the code executed by the debugger is cleanly separated from the rest of
the system and cannot interfere with the debugger context and its user interface which
would also solve the problem of debugging events while interacting with the browser.

Moreover, stack serialization trivially enables snapshotting as well as record and
replay which both can be helpful for debugging user input events and implement-
ing omniscient debugging. With so many applications, persistence for call stacks are
definitely an interesting and rewarding topic for future research.

70 CHAPTER 9. FUTURE WORK

Chapter 10

Conclusions

According to Mikkonen and Taivalsaari [33], “the web is becoming the de facto target
platform for advanced software applications”. At the same time, development tools
for JavaScript, the standard web programming language, are still inferior to the tools
available for Java and Smalltalk programmers.

Instead of providing external tools that solve this problem from the outside, Lively
is actually part of the web. It is a self-sustaining collaborative web authoring envi-
ronment in which developers use exploratory programming to continuously change
the environment and create new applications and content. The separation of writing,
testing and running code blurs in Lively which has the advantage of breaking the te-
dious edit-compile-run-debug cycle of other programming environments. On the other
side, programming errors have the potential to break the whole system which makes
frequent testing and debugging necessary.

Bugs in Lively are typically fixed by reproducing the faulty behavior, preferably
with an automated test case, and then tracing the error back to the code in order to
debug it. The Lively debugging tools allow the user to set breakpoints, to inspect the
execution state and to step through the code.

The major obstacle in providing this kind of debugging was to reify the execution
state of the JavaScript program without relying on the JavaScript VM of the browser.
This was achieved by a combination of interpretation and code instrumentation. The
code instrumentation gives insight into parts of the execution state without causing a
severe performance penalty. The interpreter on the other hand allows unlimited access
and manipulation of the execution state at the cost of a 100 000 times slower execution.

By itself, a slowdown factor in that order of magnitude would be unbearable but
the partial interpretation approach enables using a different mode of execution for
each function call and thereby limits the scope of interpretation to code that benefits
from it.

The boundary between native execution and interpretation caused a few issues, es-
pecially with closures. These were fixed by restricting the set of supported JavaScript

71

72 CHAPTER 10. CONCLUSIONS

features and relying on the Lively code organization. This also means that our imple-
mentation does not solve debugging for general purpose JavaScript code.

In the end, the partial interpretation approach enabled the implementation of a
tracing debugger which halts, resumes and steps through JavaScript code without
relying on browser-specific APIs. By using source code transformations instead of
method wrappers for the code instrumentation in the future, the gap between na-
tive and interpreted execution can be closed and seamless on-demand debugging of
JavaScript becomes possible.

Bibliography

[1] Adam Ferrari, Alan Batson, Mike Lack, Anita Jones, and David Evans. The
x86 assembly guide, 2006. URL http://www.cs.virginia.edu/~evans/cs216/
guides/x86.html.

[2] Allen Newell and James C. K. Shaw. Programming the logic theory machine.
In Papers presented at the February 26-28, 1957, western joint computer conference:
Techniques for reliability, IRE-AIEE-ACM ’57 (Western), pages 230–240, New York,
NY, USA, 1957. ACM.

[3] Inc. Object Management Group. Documents associated with uml version 2.4 - beta
2. Technical report, March 2011. URL http://www.omg.org/spec/UML/2.4.

[4] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 specification. W3C
Recommendation, December 1999. URL http://www.w3.org/TR/html4.

[5] Steven Pemberton, Daniel Austin, Jonny Axelsson, Tantek Çelik, Doug Dominiak,
Herman Elenbaas, Beth Epperson, Masayasu Ishikawa, Shin’ichi Matsui, Shane
McCarron, WebGeek Ann Navarro, Subramanian Peruvemba, Rob Relyea, Se-
bastian Schnitzenbaumer, and Peter Stark. Xhtml 1.0: The extensible hyper-
text markup language (second edition). W3C Recommendation REC-xhtml1-
20020801, World Wide Web Consortium, August 2002. URL http://www.w3.
org/TR/2002/REC-xhtml1-20020801.

[6] ECMA International. Standard ECMA-262. 1999. URL http://www.
ecma-international.org/publications/standards/Ecma-262.htm.

[7] Andreas Gal. High performance javascript, July 2011. URL http://slideshare.
net/greenwop/high-performance-javascript. Slides of a talk given at ECOOP
2011, July 28, Lancaster, UK.

[8] Henry Lieberman. The debugging scandal and what to do about it. Commun.
ACM, 40(4):26–29, April 1997. ISSN 0001-0782.

[9] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi
Mikkonen. The Lively Kernel a self-supporting system on a web page. In Robert

73

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.omg.org/spec/UML/2.4
http://www.w3.org/TR/html4
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://slideshare.net/greenwop/high-performance-javascript
http://slideshare.net/greenwop/high-performance-javascript

74 BIBLIOGRAPHY

Hirschfeld and Kim Rose, editors, Self-Sustaining Systems, volume 5146 of Lecture
Notes in Computer Science, pages 31–50. Springer Berlin, Heidelberg, 2008. ISBN
978-3-540-89274-8.

[10] John von Neumann. First draft of a report on the EDVAC. Technical report,
University of Pennsylvania, June 1945.

[11] Richard M. Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB: The
GNU Source-Level Debugger. Free Software Foundation, 9th edition, 2002.

[12] Free Software Foundation Inc. GNU compiler collection, 1987–2007. URL http:
//gcc.gnu.org/. Accessed March 2012.

[13] Free Standards Group. The DWARF debugging standard. URL http://dwarf.
freestandards.org/.

[14] Sun Microsystems, Inc., Palo Alto, CA. The Java HotSpot performance engine ar-
chitecture. Technical report, April 1999. URL http://java.sun.com/products/
hotspot/whitepaper.html.

[15] Mozilla Foundation. MozillaWiki: JaegerMonkey, June 2010. URL https://
wiki.mozilla.org/JaegerMonkey.

[16] Antero Taivalsaari, James Noble, and Ivan Moore. Prototype-based programming :
concepts, languages, and applications. Springer, New York, 1999. ISBN 9814021253

9814021253.

[17] Joyent, Inc. node.js. URL http://nodejs.org/.

[18] The Apache Software Foundation. Apache Cordova (also known as Apache Call-
back and PhoneGap). URL http://incubator.apache.org/callback/.

[19] The WebKit Authors. JavaScriptCore. URL http://webkit.org/projects/
javascript.

[20] V8 project authors. Source code of the V8 JavaScript engine. URL http://code.
google.com/p/v8/.

[21] David Mandelin. Starting JägerMonkey, February 2010. URL http://blog.
mozilla.com/dmandelin/2010/02/26/starting-jagermonkey/.

[22] James R. Bell. Threaded code. Commun. ACM, 16(6):370–372, June 1973. ISSN
0001-0782.

[23] Andy Wingo. Value representation in JavaScript implementations, 2011. URL
http://wingolog.org/archives/2011/05/18.

http://gcc.gnu.org/
http://gcc.gnu.org/
http://dwarf.freestandards.org/
http://dwarf.freestandards.org/
http://java.sun.com/products/hotspot/whitepaper.html
http://java.sun.com/products/hotspot/whitepaper.html
https://wiki.mozilla.org/JaegerMonkey
https://wiki.mozilla.org/JaegerMonkey
http://nodejs.org/
http://incubator.apache.org/callback/
http://webkit.org/projects/javascript
http://webkit.org/projects/javascript
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://blog.mozilla.com/dmandelin/2010/02/26/starting-jagermonkey/
http://blog.mozilla.com/dmandelin/2010/02/26/starting-jagermonkey/
http://wingolog.org/archives/2011/05/18

BIBLIOGRAPHY 75

[24] Nikkei Electronics Asia. Why is the new Google V8 engine so fast?, Jan 2009.
URL http://techon.nikkeibp.co.jp/article/HONSHI/20090106/163615/.

[25] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Pierre America,
editor, ECOOP’91 European Conference on Object-Oriented Programming, volume 512

of Lecture Notes in Computer Science, pages 21–38. Springer Berlin / Heidelberg,
1991.

[26] David Gudeman. Representing type information in dynamically typed languages.
Technical report, University of Arizona at Tucson, 1993.

[27] Adele Goldberg and David Robson. Smalltalk-80: the language and its implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.
ISBN 0-201-11371-6.

[28] The Eclipse Foundation. Eclipse project, 2012. URL http://eclipse.org/.

[29] Mozilla Foundation. Firebug, March 2012. URL http://getfirebug.com/.

[30] Google. Chrome Developer Tools: Overview, March 2012. URL http://code.
google.com/chrome/devtools/docs/overview.html.

[31] Mozilla Foundation. Firebug Lite, March 2012. URL http://getfirebug.com/
firebuglite.

[32] Richard Dale Hoffman. Data processing system and method for debugging
a JavaScript program. Patent, 05 2000. URL http://www.patentlens.net/
patentlens/patent/US_6061518/en/. US 6061518.

[33] Tommi Mikkonen and Antero Taivalsaari. Using JavaScript as a real programming
language. Technical report, Mountain View, CA, USA, 2007.

[34] Daniel H. H. Ingalls. The Smalltalk-76 programming system design and imple-
mentation. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages, POPL ’78, pages 9–16, New York, NY, USA, 1978.
ACM. doi: http://doi.acm.org/10.1145/512760.512762. URL http://doi.acm.
org/10.1145/512760.512762.

[35] David Ungar and Randall B. Smith. Self: the power of simplicity. SIGPLAN Not.,
22(12):227–242, December 1987. ISSN 0362-1340.

[36] Kevin Dangoor and many CommonJS contributors. CommonJS API Modules/1.0
Specification, March 2011. URL http://www.commonjs.org/specs/modules/1.
0/.

http://techon.nikkeibp.co.jp/article/HONSHI/20090106/163615/
http://eclipse.org/
http://getfirebug.com/
http://code.google.com/chrome/devtools/docs/overview.html
http://code.google.com/chrome/devtools/docs/overview.html
http://getfirebug.com/firebuglite
http://getfirebug.com/firebuglite
http://www.patentlens.net/patentlens/patent/US_6061518/en/
http://www.patentlens.net/patentlens/patent/US_6061518/en/
http://doi.acm.org/10.1145/512760.512762
http://doi.acm.org/10.1145/512760.512762
http://www.commonjs.org/specs/modules/1.0/
http://www.commonjs.org/specs/modules/1.0/

76 BIBLIOGRAPHY

[37] John H. Maloney and Randall B. Smith. Directness and liveness in the Morphic
user interface construction environment. In Proceedings of the 8th annual ACM
symposium on User interface and software technology, UIST ’95, pages 21–28, New
York, NY, USA, 1995. ACM. ISBN 0-89791-709-X.

[38] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future: the story of Squeak, a practical Smalltalk written in itself. SIGPLAN Not.,
32(10):318–326, October 1997. ISSN 0362-1340.

[39] Dean Jackson. Scalable vector graphics (SVG): the world wide web consortium’s
recommendation for high quality web graphics. In ACM SIGGRAPH 2002 con-
ference abstracts and applications, SIGGRAPH ’02, pages 319–319, New York, NY,
USA, 2002. ACM. ISBN 1-58113-525-4.

[40] Noury Bouraqadi and Serge Stinckwich. Bridging the gap between Morphic vi-
sual programming and Smalltalk code. In Proceedings of the 2007 international
conference on Dynamic languages: in conjunction with the 15th International Smalltalk
Joint Conference 2007, ICDL ’07, pages 101–120, New York, NY, USA, 2007. ACM.
ISBN 978-1-60558-084-5. doi: http://doi.acm.org/10.1145/1352678.1352685. URL
http://doi.acm.org/10.1145/1352678.1352685.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

[42] Mozilla Foundation. MozillaWiki: DevTools/Features/SourceMap, January 2012.
URL https://wiki.mozilla.org/DevTools/Features/SourceMap.

[43] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):pp. 358–366, 1953. ISSN
00029947. URL http://www.jstor.org/stable/1990888.

[44] Henry Lieberman and Christoper Fry. ZStep 95: A reversible, animated source code
stepper. MIT Press, Cambridge, MA–London, 1998.

[45] Robert Hirschfeld. AspectS - aspect-oriented programming with Squeak. In
NODe ’02: Revised Papers from the International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for a Networked World, pages
216–232, London, UK, 2003. Springer-Verlag. ISBN 3-540-00737-7.

[46] Markus Gälli, Adrian Lienhard, and Stéphane Ducasse. The SOM Family, April
2009. URL http://www.squeaksource.com/ObjectsAsMethodsWrap/.

[47] Mozilla Foundation. MozillaWiki: Object.defineProperty, March 2012.
URL https://developer.mozilla.org/en/JavaScript/Reference/Global_

Objects/Object/defineProperty.

http://doi.acm.org/10.1145/1352678.1352685
https://wiki.mozilla.org/DevTools/Features/SourceMap
http://www.jstor.org/stable/1990888
http://www.squeaksource.com/ObjectsAsMethodsWrap/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty

BIBLIOGRAPHY 77

[48] Mozilla Foundation. MozillaWiki: with statement, October 2010. URL https:
//developer.mozilla.org/en/JavaScript/Reference/Statements/with.

[49] Mozilla Foundation. MozillaWiki: eval function, June 2011. URL https://
developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval.

[50] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that
men do. In Mira Mezini, editor, ECOOP 2011 - Object-Oriented Programming, vol-
ume 6813 of Lecture Notes in Computer Science, pages 52–78. Springer Berlin /
Heidelberg, 2011. ISBN 978-3-642-22654-0.

[51] Alessandro Warth and Ian Piumarta. Ometa: an object-oriented language for
pattern matching. In Proceedings of the 2007 symposium on Dynamic languages, DLS
’07, pages 11–19, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-868-8.

[52] Bryan Ford. Parsing expression grammars: a recognition-based syntactic founda-
tion. SIGPLAN Not., 39(1):111–122, January 2004. ISSN 0362-1340.

[53] Alessandro Warth. OMeta/JS, January 2012. URL https://github.com/
alexwarth/ometa-js.

[54] Edsger W. Dijkstra. EWD 447: On the role of scientific thought. Selected Writings
on Computing: A Personal Perspective, pages 60–66, 1982. URL http://www.cs.
utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html.

[55] John-David Dalton. jsPerf: for vs array-foreach, March 2012. URL http:
//jsperf.com/bind-vs-custom.

[56] John-David Dalton. jsPerf: for vs array-foreach, March 2012. URL http:
//jsperf.com/for-vs-array-foreach.

[57] Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321146530.

[58] Henry Lieberman and Christopher Fry. Bridging the gulf between code and be-
havior in programming. In Proceedings of the SIGCHI conference on Human factors
in computing systems, CHI ’95, pages 480–486, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co. ISBN 0-201-84705-1.

[59] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, 2000. AAI9980887.

[60] Selenium contributors. Selenium - web browser automation, March 2012. URL
http://seleniumhq.org/.

https://developer.mozilla.org/en/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
https://github.com/alexwarth/ometa-js
https://github.com/alexwarth/ometa-js
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://jsperf.com/bind-vs-custom
http://jsperf.com/bind-vs-custom
http://jsperf.com/for-vs-array-foreach
http://jsperf.com/for-vs-array-foreach
http://seleniumhq.org/

78 BIBLIOGRAPHY

[61] Stephen Oney and Brad Myers. FireCrystal: Understanding interactive behav-
iors in dynamic web pages. In Proceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), VLHCC ’09, pages 105–108,
Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-4876-0.

[62] James Mickens, Jeremy Elson, and Jon Howell. Mugshot: deterministic capture
and replay for Javascript applications. In Proceedings of the 7th USENIX conference
on Networked systems design and implementation, NSDI’10, pages 11–11, Berkeley,
CA, USA, 2010. USENIX Association.

[63] Jens Lincke, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. Lively fabrik a
web-based end-user programming environment. In Proceedings of the 2009 Seventh
International Conference on Creating, Connecting and Collaborating through Comput-
ing, C5 ’09, pages 11–19, Washington, DC, USA, 2009. IEEE Computer Society.
ISBN 978-0-7695-3620-0. doi: 10.1109/C5.2009.8. URL http://dx.doi.org/10.
1109/C5.2009.8.

[64] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. Fabrik:
a visual programming environment. SIGPLAN Not., 23(11):176–190, January 1988.
ISSN 0362-1340. doi: 10.1145/62084.62100. URL http://doi.acm.org/10.1145/
62084.62100.

[65] Bret Victor. Inventing on principle, January 2012. URL http://vimeo.com/
36579366. Talk given at CUSEC 2012, January 20, Montreal, Canada.

[66] Bil Lewis. Debugging backwards in time. In Proceedings of the Fifth International
Workshop on Automated Debugging (AADEBUG 2003), pages 7,8, Oct 2003.

[67] Bil Lewis and Mireille Ducasse. Using events to debug Java programs backwards
in time. In Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’03, pages 96–97, New
York, NY, USA, 2003. ACM. ISBN 1-58113-751-6. doi: 10.1145/949344.949367.
URL http://doi.acm.org/10.1145/949344.949367.

[68] Christian Herrmanns. Entwicklung und Implementierung eines hybriden Debug-
gers für Java. Wissenschaftliche Schriften der WWU Münster / 4. Westfälische
Wilhelms-Universität, 2011. ISBN 9783840500305. URL http://books.google.
de/books?id=vd3eZwEACAAJ.

[69] Mark Christiaens, Jong-Deok Choi, Michiel Ronsse, and Koenraad De Bosschere.
Record/play in the presence of benign data races. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications - Volume
3, PDPTA ’02, pages 1200–1206. CSREA Press, 2002. ISBN 1-892512-89-0.

http://dx.doi.org/10.1109/C5.2009.8
http://dx.doi.org/10.1109/C5.2009.8
http://doi.acm.org/10.1145/62084.62100
http://doi.acm.org/10.1145/62084.62100
http://vimeo.com/36579366
http://vimeo.com/36579366
http://doi.acm.org/10.1145/949344.949367
http://books.google.de/books?id=vd3eZwEACAAJ
http://books.google.de/books?id=vd3eZwEACAAJ

BIBLIOGRAPHY 79

[70] Alessandro Warth, Yoshiki Ohshima, Ted Kaehler, and Alan Kay. Worlds: con-
trolling the scope of side effects. In Proceedings of the 25th European conference on
Object-oriented programming, ECOOP’11, pages 179–203, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 978-3-642-22654-0.

[71] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. Practical object-oriented
back-in-time debugging. In Proceedings of the 22nd European conference on Object-
Oriented Programming, ECOOP ’08, pages 592–615, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 978-3-540-70591-8.

[72] Matthew Arnold, Martin Vechev, and Eran Yahav. QVM: an efficient runtime
for detecting defects in deployed systems. In Proceedings of the 23rd ACM SIG-
PLAN conference on Object-oriented programming systems languages and applications,
OOPSLA ’08, pages 143–162, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
215-3.

[73] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Dynamic query-based
debugging of object-oriented programs. Automated Software Engg., 10(1):39–74,
January 2003. ISSN 0928-8910.

[74] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application er-
rors and security flaws using PQL: a program query language. In Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’05, pages 365–383, New York, NY, USA, 2005.
ACM. ISBN 1-59593-031-0.

[75] Andrew J. Ko and Brad A. Myers. Debugging reinvented: asking and answering
why and why not questions about program behavior. In Proceedings of the 30th
international conference on Software engineering, ICSE ’08, pages 301–310, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-079-1.

[76] Andreas Zeller. Why Programs Fail, Second Edition: A Guide to Systematic Debugging.
Morgan Kaufmann, 2009.

[77] Neil Graham. Sandbox with web workers, December 2011. URL http://
fingswotidun.com/tests/workerdraw/.

http://fingswotidun.com/tests/workerdraw/
http://fingswotidun.com/tests/workerdraw/

80 BIBLIOGRAPHY

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst sowie
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt habe.

Berlin, den 21. April 2014

Christopher Schuster

	Abstract
	Acknowledgements
	Introduction
	Execution state
	Hardware level
	Operating system level
	High-level languages
	Compiled Code
	Interpretation
	*vm

	Execution state in JavaScript
	JavaScript language
	Expressions and control flow
	Function calls
	Scoping

	Major JavaScript implementations
	JägerMonkey
	V8

	Debugging
	Firebug
	Logging

	Lively development tools
	The Lively environment
	Class system
	Morphic
	Writing Morphic applications

	Debugging
	Logging
	Displaying execution state
	Observing execution

	Partial interpretation
	Interpreting JavaScript
	Execution engine
	Memory management
	Accessing the execution state

	Limiting the scope of interpretation
	Identifying relevant execution state
	Debugging scope generally undecidable

	Execution state outside interpreter
	Method wrappers
	Source code transformations
	Rebuilding Stack

	Implementation
	Restricting JavaScript
	Scoped variables
	Other language features

	Parsing
	Language extension

	Interpretation
	Evaluating the *ast
	Scoping

	Breakpoints
	Stepping
	Descending into function call

	Resuming execution
	*pc
	Resuming with numerical *pc
	Storing intermediate results
	Interpreter call stack

	Native Code
	Single interpreter call stack
	Nested interpreter call stacks
	Unified call stack
	Method wrappers
	No native code

	Lively Integration
	Debugger statement
	Debug selection shortcut
	Test runner
	Global error handler
	Debugger user interface

	Discussion
	Restrictions with partial interpretation
	Language restrictions
	Explicit variable bindings in closures
	System organization

	Limits of the Lively debugger
	Debugging without interpretation
	Compatibility with meta-programming
	Concurrency

	Performance evaluation
	Interpretation
	Method wrappers

	Related work
	JavaScript debugging
	Record and replay
	End-user development

	Omniscient debugging
	Logging
	Snapshots

	Declarative debugging

	Future Work
	Source code transformations
	Simple call tracing
	Execution state reification

	Omniscient debugging
	Advances in browser technology
	Persistent debugging context

	Conclusions
	Bibliography

