
An Integrated Development and
Verification Environment for JavaScript
Christopher Schuster, Cormac Flanagan — University of California, Santa Cruz

There are many different ways to check whether a program is correct, such as testing, typechecking and static verification.

Testing only covers a finite set of
possible inputs and code paths.

Does this implementation match the expected behavior?
By specifying expectations with tests, types and invariants,
any mismatch can be detected automatically.

function abs(x) {

 if (x < 0) {

 return �x;

 } else {

 return x;

 }

}

abs ��

Int �� Int

var r = abs(-2);

assert(r �� 2);

 requires:

 typeof(x) ��

 "number"

 ensures:

 typeof(res) ��

 "number" ��

 res �� 0

Types are often too imprecise to express
the expected program behavior.

Understandable and predictable verification algorithm
- Avoid brittle heuristics and automatic inference

Display concrete counterexamples for free variables

- Use model from SMT solver for failed verification conditions

- Simple values can be shown as popups

- Complex values (such as functions) need to be synthesized

Interactive Verification Inspector
- Show details for verification conditions (such as assumptions and assertions)

- Enable programmers to add, remove and manipulate assumptions as part of
an interactive, exploratory environment

 Step-by-step debugging based on generated testcases
- Enable traditional debugging experience for verification issues

Proposed Solution: Executable Counterexamples and Interactive Verification Tools

For every verification issue, an
automatically generated test can be
debugged using standard debugging
controls such as watch expressions
and step-by-step execution.

JavaScript function annotated
with postcondition (ensures).

Postcondition does not hold
due to a bug in the code.

Verification Inspector
displays details.

The programmer can enter additional
assumptions and assertions as
boolean expressions to resolve this
verification issues with interactive
experimentation.

Try it out yourself!
esverify.org/idve

!

!

Program verification enables the
programmer to specify and statically
check the expected behavior based
on annotations such as
postconditions and invariants.
However, verification issues can
become very difficult to understand
and resolve!

✓

✗

Paper at PX'19 workshop. Online Demo: https://esverify.org/idve Source: http://github.com/levjj/esverify-web/ Contact: cschuste@ucsc.edu

Evaluation
Online user study with 18 participants who were given a tutorial of the
integrated development and verification environment followed by a series of
small programming and verification tasks and an online survey.

Verification
Inspector

33%

55%

6%

11%

Counter-
examples

55%

39%

6%

0%

Integrated
Debugger

44%

44%

6%

6%

Response in Survey

Helpful

UI Issues

Not useful

Impairs Development

✓
!
!
✗

Verification Condition
and Test Generator

JavaScript
Source

SMT Input Test Code
Verification Conditions

Counterexample

Successfully
Verified Model

SMT Solver

Test Runner

Implementation
Verificaiton conditions are
translated to SMT logic. If the
SMT solver finds a counter-
example, it is used for
automatic test generation.
Finally, the verification
inspector shown above lets
users interactively manipulate
verification conditions.

