%, UNIVERSITY OF CALIFORNIA

An Integrated Development and AT e
Verification Environment for JavaScript e T

Engineering
Christopher Schuster, Cormac Flanagan — University of California, Santa Cruz

There are many different ways to check whether a program is correct, such as testing, typechecking and static verification.

Does this implementation match the expected behavior? Types are often too imprecise to express I
By specifying expectations with tests, types and invariants, the expected program behavior. o
any mismatch can be detected automatically.

requires:

typeof(x) =

function abs(x) {
if (x < 0) {
return -Xx;
} else {

return Xx;

"number"

SASUEES < Program verification enables the
typeof(res) = programmer to specify and statically
"number" &6 check the expected behavior based /
res > 0 on annotations such as

postconditions and invariants.

However, verification issues can

EEEHE = 20 Testing only covers a finite set of | become very difficult to understand
possible inputs and code paths. e and resolve!

var r = abs(-2);

Proposed Solution: Executable Counterexamples and Interactive Verification Tools

Understandable and predictable verification algorithm Interactive Verification Inspector

- Avoid brittle heuristics and automatic inference - Show details for verification conditions (such as assumptions and assertions)

Display concrete counterexamples for free variables - Enable programmers to add, remove and manipulate assumptions as part of
an interactive, exploratory environment
- Use model from SMT solver for failed verification conditions

- Simple values can be shown as popups Step-by-step debugging based on generated testcases
- Complex values (such as functions) need to be synthesized - Enable traditional debugging experience for verification issues
JavaScript function annotated Verification Inspector Try it out yourself!
with postcondition (ensures). displays details. : :
p () verty | run [[RR RS play esverify.org/idve
; false
3+ function abs () {
A 4 ensures(res = res > 0); Assume:
B 5- if (n<0) {
i 575 | Zizgr? -n; The programmer can enter additional
3 return n: N abs: (res > 0) assumptions and assertions as
9 } Postcondition does not hold boolean expressions to resolve this
10 } due to a bug in the code. Assert: verification issues with interactive
experimentation.
Watch:
n false For every verification issue, an
abs function abs (n) { .. automatically generated test can be

debugged using standard debugging
controls such as watch expressions

<program> (<null>:0:0 :
T {) and step-by-step execution.

Evaluation
Step Into | Step Over | Step Out

Online user study with 18 participants who were given a tutorial of the
integrated development and verification environment followed by a series of Implementation
small programming and verification tasks and an online survey.

Counterexample

Verificaiton conditions are P \
Response in Survey Verification Counter- Integrated translated to SMT logic. If the —
Inspector examples Debugger SMT sc;lvg: finds Z (;ounter- Javascript successfully
exampie, IT 1S used 10r Source o Model
v/ Helpfu 33% o 4% auton?atic test generation. v e
I Ullssues 55% 39% 44% Finally, the verification Verification Condition u
I Not useful 6% 6% 6% inspector shown above lets and Test Generator SMT Solver
’ users interactively manipulate ¢ | v XSMT input_*Test Cod
X Impairs Development 11% 0% 6% verification conditions. Verification Conditions

Paper at PX'19 workshop. Online Demo: https://esverify.org/idve Source: http://github.com/levjj/esverify-web/ Contact: cschuste@ucsc.edu

