IDVE: an Integrated Development and Verification Environment
for JavaScript

Christopher Schuster
University of California, Santa Cruz
cschuste@ucsc.edu

ABSTRACT

Program verifiers statically check programs based on source code
annotations such as invariants, pre- and postconditions. These an-
notations can be more precise than simple types. For example, a
sorting routine might be annotated with a postcondition stating
that its result is sorted.

However, the verification process for these annotations can be-
come complex. Therefore, simple error messages may not be suffi-
cient to help the programmer resolve verification issues. In order
to improve the programming experience for verified programming,
this paper presents IDVE, an integrated development and verifica-
tion environment that lets users interactively inspect and debug
verification issues. The goal of IDVE is to provide a development
tool that assists users with program verification analogous to how
interactive step-by-step debugging avoids manual “printf debug-
ging”. IDVE enables programmers to interactively manipulate as-
sumptions and assertions of verification conditions with a novel
verification inspector, and IDVE automatically generates tests that
serve as executable and debuggable counterexamples.

In addition to presenting the approach and implementation of
the integrated development and verification environment, we also
conducted a user study with 18 participants to evaluate how the
proposed features of the environment are perceived. Participants
with and without prior experience with program verifiers had to
solve a series of simple programming and verification tasks and
answer an online survey. Features of IDVE were generally seen as
helpful or potentially helpful but user interface design is an essen-
tial factor for their utility.

CCS CONCEPTS

« Software and its engineering — Integrated and visual develop-
ment environments; Formal software verification.

KEYWORDS

programming environments, program verification, JavaScript, test
generation, interactive debugging
ACM Reference Format:

Christopher Schuster and Cormac Flanagan. 2019. IDVE: an Integrated De-
velopment and Verification Environment for JavaScript. In Companion of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Programming 19, April 1-4, 2019, Genova, Italy

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6257-3/19/04...$15.00

https://doi.org/10.1145/3328433.3328453

Cormac Flanagan
University of California, Santa Cruz
cormac@ucsc.edu

verify | run

1 ind Verification Environment

IDVE

Integrated Developr

1~ function abs(’) {
2 requires(typeof n = 'number');
ensures(res = res = 0); // does not hold

B 3
i 4+ if (n > @) {
i 5 return -n; // due to a bug
6~ } else {
7 return n;
8 }
9 1}
10

i 11 const a = abs(-23);]
i12 assert(a > 0);

|verified assert: (a > 0)‘

Figure 1: The JavaScript function abs is annotated with pre-
and postconditions. The assertion in line 12 can be statically
verified but a bug in line 7 causes a verification error for the
postcondition in line 3, so IDVE shows -1 as counterexample
for n.

the 3rd International Conference on Art, Science, and Engineering of Program-
ming (Programming ’19), April 1-4, 2019, Genova, Italy. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3328433.3328453

1 INTRODUCTION

There are different ways to check whether a program is “correct”,
including dynamic testing and static type checking. Unfortunately,
testing only checks a certain (finite) set of inputs and types may
be too restrictive to express complex correctness properties. For
example, correctness of a sorting routine requires that the output
is both sorted and contains the same elements as the input. Pro-
gram verification aims to prove such correctness properties for all
possible inputs based on annotations such as pre-, postconditions,
assertions and invariants.

Figure 1 illustrates the goals and the scope of the proposed pro-
gramming environment with a concrete example. Here, requires
and ensures are pseudo-functions calls that will be skipped dur-
ing execution but are used to specify pre- and postconditions as
a standard JavaScript boolean expression. Due to a bug, the abs
function returns its argument as a negative number, violating the
postcondition in line 3.

https://doi.org/10.1145/3328433.3328453
https://doi.org/10.1145/3328433.3328453

Programming ’19, April 1-4, 2019, Genova, Italy

The prototype implementation of the integrated development
and verification environment, abbreviated as IDVE, helps the pro-
grammer identify verification conditions and inspect potential ver-
ification errors. Figure 1 does not show the full programming en-
vironment, but it illustrates how symbols next to the line numbers
are used to indicate verification conditions. Hovering over these
marks with the mouse cursor display additional details - similar to
type errors. For failed verification conditions, IDVE also displays
counterexample values as editor popups. For example, it displays
-1 as a value for the function argument n that causes a violation of
the postcondition.

Additionally, IDVE also enables programmers to inspect spe-
cific verification conditions by opening an interactive inspector
panel (not shown in Figure 1) that lets users inspect, add and re-
move assumptions and assertions — similar to “watch expressions”
in an interactive debugger. Thereby, the verification inspector al-
lows programmers to explore the verifier state without manually
adding assert statements to the code, analogous to how interac-
tive debuggers let programmers avoid printf debugging. Finally,
the environment also includes an integrated debugger for the au-
tomatically generated test cases that lists variables in scope, shows
the current call stack and allows step-by-step debugging.

IDVE, the integrated development and verification environment
presented in this paper is an extension to sveriry [35], a program
verifier for dynamically-typed JavaScript programs. JavaScript sup-
ports both object-oriented and functional programming but esver-
1ry focusses mostly on functional programs with higher-order func-
tions and dynamic idioms and code styles such as polymorphic
functions that behave differently based on the number and types
of their arguments. The source code of esveriry as well as a live
demo are available are publicly available!

An essential part of the proposed environment is automatic gen-
eration of counterexamples for verification errors. Automatic gen-
eration of test cases is a common technique for program analysis,
often used in combination with symbolic execution [41]. As coun-
terexample for a failed verification condition, the test should serve
as a concrete witness for an assertion violation but it also needs
to be faithful to the original source code. For cases involving loop
invariants and recursion, these two goals can come into conflict
and different approaches offer different trade-offs.

Test generation involves runtime checking of function pre- and
postconditions similar to dynamically enforced contracts [16]. More-
over, for programs with higher-order functions, automatic test gen-
eration also involves synthesis of function arguments [40, 46]. The
function synthesis implemented for our test generator is based on
mapping simple arguments values to return values and therefore
limited to pure functions that do not manipulate objects. Finally,
when a generated test serves as counterexample for a function
specification, simply wrapping a function with a contract is not
sufficient to cause an assertion violation, as the test generation also
needs to generate a call to the wrapped function.

Finally, the environment and its usability for developing verified
programs was evaluated with a user study with 18 participants that
have at least basic knowledge of JavaScript. The test subjects were
given a brief introduction to the features of IDVE, had to solve a

Source code: https://github.com/levjj/esverify Live demo: https://esverify.org/try

Christopher Schuster and Cormac Flanagan

series of simple programming tasks with the environment?, and an-
swered a brief survey about their experience®. Results indicate that
more than half of the participants were able to use the features of
IDVE effectively to solve the programming and verification tasks.
All participants reported that they found the tools either helpful
or potentially helpful. However, an improved user interface design
might enable more programmers to successfully use these features.
To summarize, the main contributions of this paper are

(1) an extension for the esveriry program verifier that automati-
cally generates executable counterexamples as test cases for
failed verification conditions with synthesis of function val-
ues and assertion-violating calls,

(2) the design and implementation of an integrated develop-
ment and verification environment (IDVE) with a novel in-
teractive verification inspector and debugging interface, and

(3) auser study to evaluate whether and how IDVE assists with
simple programming and verification tasks.

The structure of the rest of the paper is as follows:
Section 2 gives an overview of verification with esveriry and dis-
cusses the relevant features of the integrated development and
verification environment, Section 3 describes the design and im-
plementation of the automatic test generation procedure, Section 4
describes the method and results of the user study, Section5 dis-
cusses related work, and finally Section 6 concludes the paper.

2 OVERVIEW OF VERIFICATION WITH
ESVERIFY AND IDVE

Our integrated development and verification environment, IDVE,
targets a subset of ECMAScript/JavaScript. While we want to sup-
port dynamic idioms, higher-order functions and mutable variables,
advanced object-oriented programming with prototypes as well as
scripting language features such as metaprogramming and reflec-
tion are orthogonal to the proposed approach discussed in this pa-
per.

IDVE is based on the esveriry program verifier. A detailed dis-
cussion of the design and implementation of esveriry is beyond
the scope of this paper, but this section introduces its basic usage
as well as its integration with IDVE.

2.1 Verification with ESVERIFY

ESVERIFY relies on source code annotations such as pre- and post-
conditions and invariants, written as pseudo function calls that will
be skipped during execution. Here, the logical propositions of these
annotations are pure boolean expressions embedded in JavaScript.
Figure 1 shows an example of an annotated JavaScript program.
Due to a bug, the abs function returns its argument as a negative
number, violating the postcondition in line 3.

Essentially, esveriry traverses the source code and generates ver-
ification conditions using a strongest postcondition predicate trans-
former approach [17, 32]. These verification conditions are then
checked by SMT solving with z3 [15] or CVC4 [5, 6]. If the SMT

2 The tutorial steps as well as the experiments are listed in Appendix A and
an archived version of the user study is available online at https://esverify.org/
userstudy-archived.

3 Survey results are included in Appendix B.

https://github.com/levjj/esverify
https://esverify.org/try
https://esverify.org/userstudy-archived
https://esverify.org/userstudy-archived

0 NN W N =

Uy
O 0 NN R W N =R OO

IDVE: an Integrated Development and Verification Environment

function inc (x) {
requires(Number.isInteger(x));
ensures(y => Number.isInteger(y) && y>x);
return x + 1;
}
function twice (f) {
requires(spec(f, (x) => Number.isInteger(x),
(x,y) => Number.isInteger(y) & y > x))
ensures(g => spec(g,(x) => Number.isInteger(x),
(x,y) => Number.isInteger(y) §&6 y > 0))
return function (x) { // should be y > x """
requires(Number.isInteger(x));
ensures(y => Number.isInteger(y) &5 y > x);
return f(f(null)); // should be f(f(x))
g
}
const incTwice = twice(inc);
const y = incTwice(3);
assert(y > 3);

Listing 1: Verification example with a higher-order function
twice. The pre- and postcondition of its function argument
f and of the returned function g are both described with the
spec syntax. Bugs in lines 10 and 14 cause verification errors.

solver cannot refute a verification condition, it is proven correct
for all inputs; otherwise a potential counterexample is returned.

It is important to note that esveriry does not infer invariants,
so programs with loops or recursion require explicitly specified
invariants and may fail to verify despite being correct.

2.2 Higher-order Functions

In order to support verification of higher-order functions, Esveriry
introduces a special spec syntax to describe the minimum pre- and
postcondition of a function value.

As an example, Figure 1 shows a function twice that expects a
function argument f. Here, any integer value for x needs to satisfy
the precondition of f and any result y returned by f needs to be an
integer greater than the argument x. The return value of twice is
itself a function that applies f twice. However, due to an error in
line 10, the postcondition of twice cannot be verified and, addition-
ally, a bug in line 14 violates the precondition of f. In Section 3.3,
we will describe how IDVE automatically generates executable test
cases that serve as counterexamples for these two errors.

2.3 Interactive Tool Support for Verification

In order to be useful in practice, program verification has to be in-
tegrated into the development process. Ideally, feedback provided
by the verifier should be instantaneous, continuous, informative,
comprehensible and actionable. Instantaneous feedback requires
the verification procedure to be fast enough to avert noticeable de-
lays. This also enables continuous feedback by implicitly invoking
the verifier after each code change. Most program verifiers, includ-
ing esverIFy, can check small to medium source files in less than
a second and thereby enable sufficiently fast feedback. Providing
comprehensible and actionable feedback, in contrast, is still a ma-
jor challenge for program verification because the complexity of

Programming ’19, April 1-4, 2019, Genova, Italy

3+ function abs (n) {
& 4 ensures(res = res > 0);
n. 5+ if (n<0) {
i yoturn _n-

incorrect abs: operator < requires number or string: n
verified abs: operator < requires number or string: @
verified abs: if condition requires boolean: (n < @)

10]

Figure 2: Verification conditions displayed as line markers
with short error messages displayed as tooltips. Due to a
missing precondition, the value of n may be incompatible
with the + operator.

the verification procedure can result in errors that are hard to un-
derstand. IDVE is an integrated development and verification en-
vironment that integrates an interactive verification inspector and
a counterexample debugger to address this issue. The implementa-
tion of IDVE is open source? and a live demo is available online®.

2.4 Basic Line Markers

Each verification condition identified by the verifier corresponds to
a location in the source code, such as a postcondition of a function
definition, a function call that has to satisfy a precondition, or the
arguments of a binary operator which have to adhere to a certain
type.

As a basic form of environment integration, the source location
of a verification condition can be displayed as an annotation or
line marker in the code editor. Figure 2 shows an example of an
editor with line markers to indicate verification conditions, using
different icons for verified, unverified and incorrect results. Here,
aresult is considered incorrect if the generated test causes an asser-
tion violation while an unverified result might have failed verifica-
tion due to a missing loop invariant rather than an actual bug in
the code. In addition to the icon, these line markers also include a
short message that can be displayed by hovering the mouse cursor
over the icon.

In addition to verification errors, this type of feedback is also
common for type errors. Indeed, the line markers in IDVE are also
used for other errors such as parsing and scoping issues.

While this integration is relatively simple, non-intrusive and
self-explanatory, the provided feedback is limited and may not be
sufficiently detailed to help the programmer understand and fix
potential verification issues.

2.5 Verification Condition Inspector

By selecting one of the line markers discussed in the previous sec-
tion, an additional panel can be opened with an interactive “inspec-
tor” for verification conditions.

Figure 3 shows an example with an active verification inspector.
Here, the verification condition in line 4 cannot be verified and is
selected in the editor on the left. The panel on the right then allows
interactive inspection of the verification condition.

4Implementation source code: https:/github.com/levjj/esverify-web
SLive demo of IDVE: https://esverify.org/idve

https://github.com/levjj/esverify-web
https://esverify.org/idve

Programming ’19, April 1-4, 2019, Genova, Italy

1
;) false @
3- function abs (ﬁ) {
& 4 ensures(res = res = 0);
5- if (n < 0) {
i 6 return -n;
7« } else {
8 return n;
9 }
10 }
11

@ show Counter Example Popups

Christopher Schuster and Cormac Flanagan

ASSUMPTIONS @

Assume:

ASSERTIONS @

unverified abs: (res > 0)

Assert:

WATCH EXPRESSIONS

Watch: @

SCOPES

n false @

abs function abs (n) { ..
function (x_0) {

CALL STACK

©®

<program> (:4:17)

Figure 3: Selecting the unverified verification condition in line 4 opens a verification inspector on the right, showing assump-

tions, assertions and a debugger for the counterexample.

In particular, the inspector lists assumptions @ such as pre-
conditions and invariants. While there are no relevant assump-
tions in this example, the user can enter an assumption in the
form of boolean expressions and add it to the verification context
for the selected verification condition. For example, by entering
the JavaScript expression typeof n === 'number', the verification
condition will be re-examined with the new assumption, causing
the verification of res >= 0 to succeed.

Similarly, the inspector displays the asserted proposition @
but also allows additional assertions to be entered by the user and
tested for the same assumptions and context. This feature of the
verification inspector can be useful for interactive exploration and
experimentation with the verification context without having to
change the original source code (analogous to how interactive de-
buggers supersede “printf debugging”). This feature is novel in ver-
ified programming environments as existing environments such as
Dafny IDE only display information about verification conditions
without providing ways to interactively alter assumptions and as-
sertions with a verification inspector.

2.6 Counterexample Popups

For each failed verification condition, a counterexample is synthe-
sized based on the SMT solver output. This counterexample in-
cludes concrete JavaScript values for free variables such as func-
tion arguments and mutable variables in the surrounding scope.
IDVE displays these counterexample values for the currently se-
lected verification condition as popups @ in the editor. These
popups are directly connected to the relevant variable or parame-
ter definition but they also obscure the source code below and they
only display short summaries that may be inadequate for complex
values such as nested objects and arrays. Visualizations of nested

data structures is also an important challenge for regular debug-
gers and development tools [21].

2.7 Debugger Integration

Even with information about values of free variables such as those
displayed with editor popups, it may not be obvious why a postcon-
dition may not hold — especially for longer functions and methods.

In these cases, it might be helpful to inspect the current values
of variables at different points in the function body. In general, this
can be achieved by using an interactive step-by-step debugger. In
the context of a failed verification condition, a counterexample test
can be automatically generated for the purpose of debugging (see
Section 3). Running this test will either result in an assertion vio-
lation, which serves as a concrete witness for a bug in the code or
annotations, or a successful test execution without error, which in-
dicates that a false positive was caused by the conservative static
analysis of loops and recursion. In both cases, stepping through
the code can help with understanding the verification issue and
locating the root cause of the bug.

There are two possible approaches for debugging the counterex-
ample test. On the one hand, the generated test could be “exported”
and debugged with a traditional debugger in a separate tab or win-
dow. This would ensure a traditional debugging experience and
could even enable the generated test to be added to an existing
unit test suite. However, this approach requires the user to switch
contexts between the original code and the test. Moreover, this ap-
proach exposes the automatically generated test code which may
not be human readable and whose mapping to the original source
code may not be obvious.

On the other hand, it is possible to hide the automatically gener-
ated test code and debug the counterexample directly on the level

IDVE: an Integrated Development and Verification Environment

of the original source program. Essentially, the debugger inter-
nally steps through the generated test while highlighting expres-
sions and statements in the original source code that correspond
to the current code fragment in the test. This approach avoids con-
text switches but it might cause an unexpected order of execution
steps in the visible source code if the control flow in the generated
test differs from the control flow in the original program due to
inserted dynamic checks or contract wrappers. Alternatively, the
user could also disable stepping through user-written wrappers in
order to avoid these jumps.

Figure 3 shows an integration using the latter approach. Here,
the debugger is halted at the assertion res >= 0, and IDVE shows
watched expressions @ variables in scope @ and the call stack
@, The user can add additional watch expressions and display

their evaluation results. For example, entering res in @ will show
false as the returned value for this counterexample. Additionally,
the execution can be stepped using standard debugger controls @

In contrast to debugging regular executions, the integrated de-
bugger of the verification environment includes both a dynamic
context from the actual test execution as well as a static context
representing the verifier state at different points in the code. For
example, for abs, the scope panel @ contains both the function
value used by the test execution in black and a synthesized func-
tion value in brown below. Only a single value is displayed if the
value from the dynamic and static contexts agree. While this in-
formation is not relevant in this example, comparing the dynamic
and static value of a mutable variable after a loop may help to un-
derstand missing or incorrect loop invariants (see Section 3.2).

Internally, the debugger is implemented as an interpreter that
operates directly on the JavaScript AST of the test code. This in-
curs a high performance penalty over techniques such as source-
to-source compilation [7] but it provides greater flexibility for in-
corporating additional features. For example, the IDVE debugger
maintains both a dynamic execution and a static verifier context
and it provides a better debugging experience for stepping through
function wrappers.

3 AUTOMATIC TEST GENERATION FOR
COUNTEREXAMPLES

This section describes the design and implementation of the verifi-
cation process and particularly the automatic test generation®.

3.1 Verification Process

Figure 4 illustrates the basic verification process including program
verification and automatic test generation.

In summary, the verification step traverses the entire source
program. At each statement and expression, the current verifica-
tion context is used to generate verification conditions and aug-
ment the context for subsequent statements and expressions. Specif-
ically, the verification context includes

o alogical proposition that acts as precondition,
e a set of free variables with unknown values, and
e a synthesized test with holes.

The automatic test generator is already merged into ESVERIFY and its implementa-
tion is available at https://github.com/levjj/esverify/.

Programming ’19, April 1-4, 2019, Genova, Italy

Counterexample

Test Runner

JavaScript Successfully
Source
. . e hy
Verification Condition
and Test Generator SMT Solver

) v \ SM'WTest Cod

Verification Conditions

Figure 4: The basic verification workflow: EsveriFy generates
verification conditions to be checked by SMT solving. In or-
der to better explain verification issues to the programmer,
we extended esveriFy to also generate tests for failed verifi-
cation conditions that serve as counterexamples.

Each returned verification conditions consists of such a context
and an assertion to check, such as a function postcondition.

The next step of the verification process involves checking the
verification condition with an SMT solver. If the solver cannot
refute the proposition, the verification succeeded. Otherwise, the
returned model includes an assignment of free variables that acts
as a counterexample.

Such a model can then be combined with the synthesized partial
test. Inserting concrete values into the holes of the test yields an
executable counterexample that can be evaluated by a test runner.
The test result provides useful feedback such as a dynamic asser-
tion violation and enables inspection with interactive step-by-step
debuggers and other tools.

3.2 Verification Errors and Assertion
Violations

The purpose of the automatic test generation is to provide better
feedback about failed verification conditions. To that end, the gen-
erated test should reflect both the specifics of the verification pro-
cess as well as the actual behavior of the source code. In the case
of loops and recursion, these two goals come into conflict because
the static verifier overapproximates program behavior and thereby
detects potential assertion violations that are not encountered by
the actual evaluation of the program.

As an example, Listing 2 shows a program with an assertion that
cannot be verified. For any statements below the while loop, the
loop invariants can be assumed to hold and the loop condition will
be false but, apart from these assumptions, all mutable variables in
the code could have changed arbitrarily. Therefore, the assertion
in line 11 cannot be verified despite safe remaining unchanged by
the loop when executing the program. Adding invariant(safe);
to the loop would let its verification succeed.

There are two possible options for generating a counterexample
test in these situations. One option is to reuse large fragments of
the original program for the test. If the test leads to an error or as-
sertion violation, it can serve as a witness of an ‘actual’ error that

https://github.com/levjj/esverify/

O 0 N U W N =

_ -
- o

0 NN U AW N =

Programming ’19, April 1-4, 2019, Genova, Italy

let safe = true;
let i = 0;
while (i < 3) {
invariant(Number.isInteger(i) && i <= 3);
if (i === 42) {
safe = false;
I
1++;
}
assert(i === 3); // verifiable
assert(safe); // cannot be verified

Listing 2: Verifier detects assertion violation due to missing
loop invariant.

let safe = true;

let i = 0;

// loop omitted; variables assigned according to SMT
safe = 0;

i=3;

// statements after the while loop:

assert(i === 3);

assert(safe);

Listing 3: Replacing while loop in Listing2 with

counterexample values for test generation.

would also occur during normal execution and that can be fixed
using the standard debugging process. However, for the example
shown in Listing 2, running such a test would not result in an as-
sertion violation because the original program execution satisfies
the assertion in line 11. This indicates that the static analysis did
not accurately model the actual program behavior. Instead, the ver-
ification error is caused by an insufficiently strong loop invariant
or precondition/postcondition. Unfortunately, there is no feedback
about which annotation might be missing or what the internal ver-
ification state is regarding mutable variables after the loop.

As a second option, the generated test for the failed assertion
in Listing 2 can omit the original while loop and instead insert
assignments to mutable variables according to the values in the
SMT model. Listing 3 shows an example of such a test. Clearly, the
generated test reliably causes an assertion violation. Also, by using
values from the SMT model for mutable variables after the loop,
the generated test might help the programmer better understand
the verification process and its shortcomings, and how the loop
invariants can be improved to satisfy the assertions below the loop.
In this case, the loop invariants constrain the mutable variable i
< but the possibles values of safe are left unrestricted, so the
SMT model may assign it false or even 0 after the loop. This is
theoretically consistent with the specified invariants but different
from the actual program behavior of the loop.

As outlined in this section, both the test case with the original
source code as well as the model-based generated test case yield
useful feedback to the programmer, serving the two competing
goals of inspecting both the actual program behavior and static
verification process.

To provide the benefits of both approaches, the esveriry test gen-
erator retains the original loops but also enable programmers to

Christopher Schuster and Cormac Flanagan

function twice (f) {

f = function (x) { // spec(f, ...) in line 7

const y = f(x);
assert(Number.isInteger(y) §& y > x);
return y;

IE

const g = function (x) { // inner function in lines 11-15
assert(Number.isInteger(x)); // need to check precond.
const y = f(f(null)); // but can assume postcond.
return y;

g

g = function (x) { // spec(g,
assert(Number.isInteger(x));
const y = g(x);
return y;

}

return g; // return the wrapped inner function

...) in line 9

Listing 4: Transformed code for the twice function in
Listing 1. The assignments in lines 2 and 12 install wrappers
according to the spec in lines 7 and 9 of Listing 1.

query the variables in the verifier state with an integrated debug-
ger.

3.3 Dynamic Checking of Assertions

The generated test for a verification condition consists of a trans-
formed fragment of the relevant source code and a dynamically-
checked assertion.

Assertions such as pre-, postconditions and invariants are speci-
fied as JavaScript boolean expressions. Therefore, dynamically check-
ing these assertions as part of a test can be performed by evaluating
these boolean expressions and throwing an exception if the eval-
uation result is different from true. If the source programs use
exceptions handling, a potential assertion violation should be re-
ported even if the exception is caught. However, esveriry does not
currently support exception handling and rejects programs with
try/catch blocks.

In contrast to simple boolean expressions, function specifica-
tions using the spec syntax, as used by the twice function in List-
ing 1, cannot be checked dynamically for all values at the point of
the assertion. Instead, the function argument is wrapped in a con-
tract that enforces the specified pre- and postcondition for each
subsequent call in the scope of this spec.

Listing 4 illustrates how the twice function can be transformed
to enable dynamic checking of function specifications. The code
shown here is slightly simplified. In particular, it does not collapse
wrappers to avoid repeated and redundant wrapping. It is impor-
tant to note that assuming and asserting a function specification
result in a different transformation. In this example, the twice
function and its returned inner function are assumed to adhere
to their function specifications but the function argument f is not
trusted to behave correctly when invoked with correct arguments.
Therefore, the postcondition of f is dynamically checked but its
precondition assumed, and conversely, the preconditions of g and

0 NN W N =

IDVE: an Integrated Development and Verification Environment

class A {
constructor (x) {
this.x = x;
}
m () {
assert(this.x > 0);
I
}

Listing 5: A simple class definition. The assertion in line 6
does not hold for all instances of A.

const this_0 = new A(false);
assert(this_0.x > 0);

Listing 6: Generated test for the failed assertion in line 6 of
Listing 5.

the spec in the postcondition of twice are enforced but their post-
conditions are not. Incidentally, this mechanism is similar to blame
assignment [1, 26].

The example in Listing 1 only includes first and second-order
functions but it is also possible for a function specification with
spec to occur within another spec. In that case, the transforma-
tion of function specifications is applied recursively, i.e. the inner
wrapping code gets executed as part of the dynamic checks of the
outer wrapper.

This technique of dynamically checking assertions is only used
in generated counterexample test but it could also be adapted to
support sound execution of partially verified programs, similar to
“soft verification” [33] and “gradual verification” [4].

3.4 Synthesis of Counterexample Values

As shown in Figure 4, if the SMT solver refutes a verification condi-
tion, it returns a model that assigns values to free variables in the
verification condition. In order to generate executable tests, these
values have to translated from an SMT internal format to valid
JavaScript expressions that can be inserted into the testing code.
For opaque JavaScript values such as undefined, null, true and
false this translation is trivial. Numeric values in JavaScript con-
flate integers and floating point numbers and therefore are rep-
resented as either integers or real numbers in the SMT format
in order to support both integer semantics for array indexing as
well as floating point semantics for arithmetic operators’. Modern
SMT solvers such as z3 [15] and CVC4 [5, 6] contain theories for
strings with support for indexing and substrings®. Therefore, these
JavaScript strings can be directly represented as SMT strings.
ESVERIFY provides limited support for object-oriented program-
ming by means of immutable “classes” without inheritance and
only trivial constructors. As an example, Listing 5 shows a class def-
inition with a method m containing an incorrect assertion. Adding

"The SMTLIB standard also includes floating point values which, in contrast to real
numbers, have limited precision. Unfortunately, current SMT solver implement these
as bitvectors which negatively affects solving performance.

8Theories for strings have been added relatively recently and are still prone to errors
such as SMT solver timeouts when converting strings with str.to.int.

O 0 N O Ul W N =

10

RN
N =

Programming ’19, April 1-4, 2019, Genova, Italy

let f = function (x) { // synthesized function as

if (x === 3) { // part of counterexample
return 9174;

}

return false;

};

f = function (x) { // spec(f, ...) in line 7
assert(Number.isInteger(x)); // need to check precond.
return f(x); // but can assume postcond.

};

let x = 3; // variable in scope (unused)

f(null);

Listing 7: Generated test for precondition of f(null) in line
9 of Listing 1.

a sufficiently strong class invariant to A would let verification suc-
ceed. In the generated test shown in Listing 6, this is renamed
and initialized with a constructor invocation according to the SMT
model.

For plain JavaScript objects/records and arrays, the test genera-
tion follows a similar strategy. Due to the modeling of data struc-
tures as immutable values instead of heap references, the gener-
ated counterexamples deviate from standard JavaScript semantics
with regards to aliasing. Similarly, counterexamples with cyclic ref-
erences in data structures are not currently supported.

In order to generate counterexamples for higher-order functions,
the test generator has to synthesize function values. Program syn-
thesis is an active research topic with various different approaches
and techniques [2, 19, 45] but esveriry only supports a limited syn-
thesis for the purpose of test generation. In particular, the synthe-
sis of function values is limited to pure functions that map prim-
itive argument values to return values. Thereby, the function can
be expressed as a series of conditionals.

Listing 7 shows a generated test for the violated precondition of
f(null) in line 9 of Listing 1. Here, a synthesized function value
is assigned to f and then wrapped according to the specification
in line 7 of Listing 1, resulting in an assertion violation when in-
voked with null. The synthesized function is based on a partial
mapping and might include constants picked nondeterministically
by the SMT solver. Therefore, the synthesized function may not
adhere to the function specification when invoked with other ar-
guments not included in the SMT mapping. This is why the syn-
thesized function f returns a seemingly random number such as
9174 for the argument 3 but does not return “correct” values for
other arguments.

3.5 Generating Counterexample Function Calls

When asserting function specifications, the specification is trans-
formed to a wrapper in the generated test. However, without sub-
sequent calls, the test would simply end without triggering an as-
sertion violation. Therefore, the test generator also needs to syn-
thesize a violation-provoking call after installing the wrapper for
the asserted specification.

As an example, the postcondition of the twice function in List-
ing 1 does not hold because the inner postcondition in line 12 is
not satisfied by the returned function. Listing 8 shows a simplified

O 0 N U W N =

_. o a a a a a a —a
NN W N = O

Programming ’19, April 1-4, 2019, Genova, Italy

let f = function (x) {
if (x === -2) {
return -1;
I3
if (x === -1) {
return 0;
}
return false;
I5
const g = function (n) { // original body of twice
return f(f(n)); // use f(f(n)) instead of f(f(null))

// synthesized function as
// part of counterexample

g = function (x) {) in line 12
const y = g(x);
assert(Number.isInteger(y) &6 y > 0);
return y;
g
g(-2);

// spec(g, ...

// synthesized function call

Listing 8: Generated test for the postcondition in line 9 of
Listing 1. In addition to synthesizing f and wrapping the
returned function g, it also generated a call.

generated test with a synthesized function value for f, the origi-
nal function body of twice (assuming f(f(null)) is replaced by
f(f(n))), and a wrapper for the function specification in the post-
condition of twice. Additionally, the generated test also includes
a synthesized function call g(-2) that causes an assertion viola-
tion in line 15. The argument values for this violation-provoking
function call are determined based on the SMT model.

4 EVALUATION AND USER STUDY

IDVE was evaluated with a user study with 18 participants. This
section describes the relevant research questions, the design of the
user study, its results, and potential threats to validity.

4.1 Research Questions

In contrast to the program verifier itself, the design of the inte-
grated development and verification environment is difficult to
evaluate due to the subjective experience of programmers and the
large solution space. This user study aims to provide insight into
answering the following three research questions in order to in-
form future designs of such environments.

RQ1I: Can IDVE assist in the development process? Do program-
mers use features such as line markers, interactive manipulation
of assumptions and assertions, counterexample editor popups and
integrated debugging if these features are available for solving a
given task?

RQ2: Is the proposed user interface helpful and intuitive? Careful
consideration is required for the design of user interfaces of de-
velopment environments in order to balance the amount of infor-
mation and interactive controls. Therefore, this user study should
determine whether the proposed design is generally perceived as
intuitive or as overwhelming and cumbersome.

RQ3: How does programming proficiency and prior experience with
program verification affect utility? The proposed environment should

Christopher Schuster and Cormac Flanagan

ideally be accessible and usable by both novices and experienced
programmers. However, programming expertise and experience
with program verification might be a prerequisite for effectively
using the proposed features of the environment.

4.2 Methodology

IDVE is still an early prototype and not yet ready for productive
software development. Therefore, the user study focuses on how
proposed features can be used for smaller programming and ver-
ification tasks. Test subjects had no prior experience with IDVE
itself but indicated to have at least basic knowledge of JavaScript
and might have used other program verifiers before.

The user study was conducted entirely online. Subjects were re-
cruited with an invitation sent to a public mailing list and remained
anonymous. 18 adults entered the study and were presented with
a brief introduction of IDVE, followed by a series of programming
and verification tasks, and finally surveyed about their experience
using the tool.

Appendix A lists instructions, provided code and hints for the tu-
torial and experiments. Additionally, an archived version of these
tasks is available online at https://esverify.org/userstudy-archived.

For the first step, a guided tutorial introduced

the source code editor itself,

a simple verification example similar to the one in Figure 1,
an interaction with the verification inspector as described
in Section 2.5, and

e an interaction involving stepping through a generated test
with the integrated debugger discussed in Section 2.7.

After the tutorial, participants solved three short tasks:

(1) The first experiment involves an incorrect factorial function
that causes an infinite recursion for negative arguments. This
task can either be solved by changing the precondition or by
changing the implementation of the function. Participants
could use the verification inspector and the integrated coun-
terexample debugger but editor popups were disabled.

(2) For the second experiment, a correct implementation of six-
sided dice rolling function was given. However, the function
was missing postconditions necessary for verification of the
subsequent code. Editor popups and the verification inspec-
tor were both disabled, so only basic line markers were avail-
able for this experiment.

(3) The third and final experiment involved a function for con-
verting the number of minutes since midnight into a 24-
hour digital clock format. The provided code included bugs
in both the annotations as well as the implementation. Both
the verification inspector and editor popups were available
but the integrated debugger was disabled.

All experiments could be skipped at any time and did not measure
time or success. Instead, test subjects proceeded to the next exper-
iment at their own discretion and filled out a survey form about
their experience at the end.

https://esverify.org/userstudy-archived

IDVE: an Integrated Development and Verification Environment

4.3 Results

A full record of survey answers for all 18 participants including
written comments can be found in Appendix B. These answers pro-
vided empirical evidence towards answering the research questions
above.

RQ1: Can IDVE assist in the development process? According to
the survey results shown in Table 1, the usage and the perceived
benefits vary for the three main features of IDVE. While half of the
participants made use of counterexample popups, the verification
inspector was only used by 39 percent of participants, and the in-
tegrated debugger by 28 percent. In total, 15 participants reported
using at least one of the tools. When features were used, they are
generally seen as helpful or at least potentially helpful. This indi-
cates that IDVE can effectively assist programmers.

RQ2: Is the proposed user interface helpful and intuitive? As shown
in Table 1, the verification inspector, the counterexample editor
popups and the integrated debugger were considered helpful by
33/55/44 percent of the subjects. Another 50/39/44 percent reported
that these features could be helpful with an improved user inter-
face. Additionally, a third of the subjects tried to use the verifica-
tion inspector and the counterexample popups but reported being
unsuccessful. Overall, the results suggest that the user interface is
an important factor for using verification in practice.

Incidentally, half of the participants did not try to use the inte-
grated debugger despite considering it helpful or potentially help-
ful. This might be a result of the experimental setup with program-
ming tasks that were too trivial to require debugging but it might
also indicate that the debugger integration might benefit the most
from user interface improvements.

RQ3: How does programming proficiency and prior experience with
program verification affect utility? As part of the user study, partici-
pants ranked their JavaScript proficiency on a scale from 1 (novice)
to 5 (expert) and indicated whether they had prior experience with
program verification. Table 2 shows how this related to usage and
perceived benefits of IDVE. Here, it is most noteworthy that all
participants, including those without JavaScript expertise or prior
verification experience, found at least one of the the features help-
ful. Also, no significant differences were reported on the actual
usage of these features in the experiments. While these results sug-
gest that IDVE is accessible for both beginner and experienced pro-
grammers, the number of test subjects may be too low to fully sup-
port these conclusions. In fact, three of the participants remarked
in written feedback that a more comprehensive tutorial about pro-
gram verification would have been helpful.

4.4 'Threats to Validity

The user study had a limited scope with only three short program-
ming tasks and 18 participants. Therefore, it is possible that a broader
user study with larger programming projects and more partici-
pants would yield different results. However, while scalability could
be a concern for the runtime performance of the verifier, it can be
expected that the responses of this user study regarding usability
are at least indicative of a general trend that would also be observed
by a larger user study.

Programming ’19, April 1-4, 2019, Genova, Italy

Additionally, the results of this user study might be specific to
JavaScript. It is possible that this approach for an integrated de-
velopment and verification environment would be inadequate or
unpractical for a different programming language or a different
domain. For example, the integrated debugger for automatically
generated tests may not be applicable to programs involving con-
currency or input/output to external services or components.

5 RELATED WORK

The work presented in this paper comprises program verification,
development environments and automatic test generation; each of
which has been studied in prior research.

5.1 Program Verification

While this paper focuses on the verification environment, it is based
on existing research in program verification [35]. In particular, the
ESVERIFY program verifier is closely related to Dafny [29, 30], a veri-
fied programming language with static types, and LiquidHaskell [44],
a dependent and refinement type system for Haskell. However,
the verification system presented in this paper targets JavaScript,
a dynamically-typed language. Another recent static verifier for
JavaScript is JaVerT [18]. However, in contrast to esveriry, JaVerT
uses segmentation logic to reason about heap-allocated objects;
but does not support higher-order functions.

5.2 Integrated Verification Tools

There has also been prior work on debugging tools in the context
of program verification.

Even without static analysis, annotations such as function con-
tracts may benefit from tool support such as dynamic activation/de-
activation [24] and dedicating debugging features [3].

Tymchuk et al. recently investigated the integration of static
analysis in a development environment by conducting interviews
and concluded that this integration is essential for adoption [43].

For program analysis with symbolic execution, Hentschel et al.
recently presented a Symbolic Execution Debugger that is inte-
grated into Eclipse and offers a similar user experience to tradi-
tional debuggers [23].

In the context of program verification, work on dedicated debug-
ging tools overlaps with research on interactive theorem provers.
For example, the Proof Script Debugger for the KeY System [8] of-
fers step-by-step debugging for proof scripts and inspection of the
verifier state as assistance for theorem proving.

The most closely related research regarding integrated devel-
opment and verification environments is the work on tools for
Boogie, Dafny and Viper [39]. In particular, Le Goues et al. pre-
sented a verification debugger for Boogie, a low-level verification
language [28] used internally by verifiers such as Dafny. At the
same time, Dafny programs can also be debugged with an inte-
grated development environment called Dafny IDE [10, 31] that
addresses feedback about verification issues similar to IDVE. The
Dafny IDE also allows inspection of counterexamples, including
the state of variables at different stages in the verification of a
function body. However, in contrast to IDVE, it does not enable
the user to interactively modify assumptions and assertions of a
verification condition.

Programming ’19, April 1-4, 2019, Genova, Italy

Christopher Schuster and Cormac Flanagan

Verification Environment Feature

Response (%) Verification Inspector ~Counterexample Popups Integrated Debugger
Used this feature in experiments 39 50 28
Unsuccessfully tried using it 33 33 22
Did not use it 27 17 50
The feature is helpful 33 55 44
It could be helpful with different UI 50 39 44
It is not useful for development 6 6 6
It impairs the development process 11 0 6

Table 1: Participants indicated which features were used in the experiments and whether these features are seen as helpful.

Experience with JavaScript Verifiers

12345 no yes

Participants 12366 8 10

Successfully used features 12354 6 9
Sees features as potentially helpful 1 2 3 6 6 8 10

Table 2: Usage and perception of verification environment
features in relation to self-proclaimed proficiency.

5.3 Automatic Test Generation

While the goal of this paper is focused more on programming envi-
ronment, Section 3 described the automatic test generation of ver-
ification counterexamples as a basis for further environment in-
tegration. Counterexample generation is an essential concept for
both SMT solving and theorem proving [13]. Automatic test gener-
ation, i.e. generation of executable counterexamples, extends this
idea and is a common technique for both program analysis and
verification.

For program analysis, techniques such as symbolic execution,
“whitebox testing” and parameterized testing [12, 20, 37, 41, 42] use
path conditions to reason about control flow and generate random
inputs in order to explore more program paths and thereby achieve
higher test coverage. The approach in this paper, however, is based
on formal verification rather than symbolic execution. Here, the
main difference is the reasoning about loops and recursion. While
verification requires manual annotations to avoid false positives,
symbolic execution approximates the program behavior and may
produce false negatives.

On a side note, This paper targets JavaScript, a dynamically-
typed language, but automatic generation of error witnesses has
also been explored for type errors in OCaml [36].

Heidegger and Thiemann previously presented a system for an-
notating JavaScript code with contracts that are used for guided
random testing [22]. However, instead of using a static analysis
such as program verification, the contracts have to be labelled ex-
plicitly by the programmer to guide the random testing.

Similarly, Klein et al. proposed a system in which test inputs are
generated for stateful programs by randomly creating primitive
values and objects, calling random functions and methods avail-
able in the current context and synthesizing function bodies [27].

This approach is similar to the test generation presented in Sec-
tion 3. However, it provides better support for object-oriented pro-
grams (see also Thummalapenta et al. [40]) and it might not be able
to explore deeper issues due to the black box generation of test in-
puts.

Automatic test generation has also been previously explored in
the context of program verification in systems such as KeY [9], for
techniques such as abstract interpretation [47], and for runtime
verification [38].

For partially verified code, Christakis et al. proposed to use resid-
ual assumptions for complementary checking and dynamic testing
in order to find more errors [11, 12].

Alternatively, conditional model checking is based on a condi-
tion that models control flow for properties that cannot be verified.
This condition can either be translated back into a program that
represents the unverified parts, or, alternatively, the unverified as-
sertions can be used as slicing criterion for the original program.
The residual program is then used for dynamic testing [14]. While
conceptually similar, the automatic test generation presented in
this paper targets higher-order functional programs and requires
explicit invariants for loops.

More recently, Nguyen and Van Horn presented an approach for
generating counterexamples for high-order functional programs.
The paper uses a restrictive core language similar to simply-typed
lambda calculus and finds counterexamples by SMT solving with
an approximation relation for stateful programs [34].

Finally, for partially verified programs, verified assertions and
invariants that depend on unverified verification conditions can
be vulnerable, so robustness testing might be applicable [25].

6 CONCLUSIONS

Program verifiers enable expressing and checking various correct-
ness properties but understanding and debugging resulting verifi-
cation errors can be difficult. In this paper, we proposed both an in-
tegrated development and verification environment that automat-
ically generates executable counterexamples for both first-order
and higher-order functional programs.

These generated tests are used internally by IDVE, a prototype
implementation of an integrated development and verification en-
vironment. It enables step-by-step debugging of these counterex-
amples and inspection of verification conditions including the op-
tion to interactively add or remove assumptions and assertions.

IDVE: an Integrated Development and Verification Environment

To evaluate this approach, we conducted a user study with 18
participants and conclude that the proposed development and veri-
fication environment can assist programmers and is generally seen
as helpful, especially its feature for displaying counterexample val-
ues as editor popups. However, the user study also found that inter-
face design is an important factor that could be improved to ensure
that the proposed environment integration is useful in practice.

There are still open questions that could be addressed by future
work such as whether this approach scales to larger applications
with multiple developers and how it can be applied to other do-
mains and programming paradigms.

REFERENCES

[1] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011.

Blame for All. In POPL ’11.

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R.

Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. 2015. Syntax-guided synthesis.

Dependable Software Systems Engineering (2015).

[3] Ryoya Arai, Shigeyuki Sato, and Hideya Iwasaki. 2016. A Debugger-Cooperative
Higher-Order Contract System in Python. In Programming Languages and Sys-
tems.

[4] Stephan Arlt, Cindy Rubio-Gonzalez, Philipp Riimmer, Martin Schif, and Natara-
jan Shankar. 2014. The Gradual Verifier. In NASA Formal Methods.

[5] Clark Barrett and Sergey Berezin. 2004. CVC Lite: A New Implementation of the
Cooperating Validity Checker. In CAV’04.

[6] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
CAV’11.

[7] Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi, and Ar-
jun Guha. [n. d.]. Putting in All the Stops: Execution Control for JavaScript. In
PLDI'18.

[8] Bernhard Beckert, Sarah Grebing, and Alexander Weigl. 2018. Debugging Pro-
gram Verification Proof Scripts (Tool Paper). CoRR (2018).

[9] Bernhard Beckert, Reiner Hihnle, and Peter H. Schmitt. 2007. Verification of
Object-oriented Software: The KeY Approach.

[10] Maria Christakis, K. Rustan M. Leino, Peter Miiller, and Valentin Wiistholz. 2016.
Integrated Environment for Diagnosing Verification Errors. In TACAS’16.

[11] Maria Christakis, Peter Miiller, and Valentin Wiistholz. 2012. Collaborative Ver-
ification and Testing with Explicit Assumptions. In FM’12.

[12] M. Christakis, P. Miiller, and V. Wiistholz. 2016. Guiding Dynamic Symbolic
Execution toward Unverified Program Executions. In ICSE’16.

[13] Simon Cruanes and Jasmin Blanchette. 2016. Extending Nunchaku to Dependent

Type Theory. In Hammers for Type Theories (HaTT 2016), Vol. 210. 3-12.

Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. 2015. Just Test What

You Cannot Verify!. In Fundamental Approaches to Software Engineering.

[15] Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In

TACAS’08.

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-order

Functions. In ICFP *02.

[17] Cormac Flanagan and James B. Saxe. 2001. Avoiding Exponential Explosion:

Generating Compact Verification Conditions. In POPL “01.

José Fragoso Santos, Petar Maksimovi¢, Daiva NaudziGiniené, Thomas Wood,

and Philippa Gardner. 2018. JaVerT: JavaScript verification toolchain. POPL’18

(2018).

[19] Joel Galenson, Philip Reames, Rastislav Bodik, Bjérn Hartmann, and Koushik
Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets. In
ICSE 2014.

[20] X. Ge, K. Taneja, T. Xie, and N. Tillmann. 2011. DyTa: dynamic symbolic execu-
tion guided with static verification results. In ICSE’11.

[21] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visu-

alization for Cs Education. In Proceeding of the 44th ACM Technical Symposium

on Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 579-584.

Phillip Heidegger and Peter Thiemann. 2010. Contract-Driven Testing of

JavaScript Code. In Objects, Models, Components, Patterns.

[23] Martin Hentschel, Richard Bubel, and Reiner Hihnle. 2018. The Symbolic Execu-
tion Debugger (SED): a platform for interactive symbolic execution, debugging,
verification and more. International Journal on Software Tools for Technology
Transfer (2018).

[24] Robert Hirschfeld, Michael Perscheid, Christian Schubert, and Malte Appeltauer.

2010. Dynamic Contract Layers. In SAC ’10.

Stefan Huster, Jonas Strébele, Jirgen Ruf, Thomas Kropf, and Wolfgang Rosen-

stiel. 2017. Using Robustness Testing to Handle Incomplete Verification Results

When Combining Verification and Testing Techniques. In Testing Software and

[2

[

[14

[16

[18

[22

[25

Programming ’19, April 1-4, 2019, Genova, Italy

Systems.

Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-order
Contracts with Intersection and Union. In ICFP’15.

Casey Klein, Matthew Flatt, and Robert Bruce Findler. 2010. Random Testing for
Higher-order, Stateful Programs. In OOPSLA ’10.

Claire Le Goues, K. Rustan M. Leino, and Michal Moskal. 2011. The Boogie
Verification Debugger (Tool Paper). In Software Engineering and Formal Methods,
Gilles Barthe, Alberto Pardo, and Gerardo Schneider (Eds.).

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In LPAR’10.

K. Rustan M. Leino. 2013. Developing Verified Programs with Dafny. In ICSE’13.
K. Rustan M. Leino and Valentin Wiistholz. 2014. The Dafny Integrated Develop-
ment Environment. In Workshop on Formal Integrated Development Environment,
F-IDE 2014.

C. Belo Lourenco, M. J. Frade, S. Nakajima, and J. Sousa Pinto. 2018. A General-
ized Approach to Verification Condition Generation. In COMPSAC’18.

Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn.
2017. Soft Contract Verification for Higher-order Stateful Programs. POPL’17
(2017).

Phuc C. Nguyen and David Van Horn. 2015. Relatively Complete Counterexam-
ples for Higher-order Programs. In PLDI ’15.

Christopher Schuster, Sohum Banerjea, and Cormac Flanagan. 2018. esverify:
Verifying Dynamically-Typed Higher-Order Functional Programs by SMT Solv-
ing. In IFL ’18.

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic Witnesses for
Static Type Errors (or, Ill-typed Programs Usually Go Wrong). In ICFP’16.
Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Test-
ing Engine for C. In Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA, 263-272.
https://doi.org/10.1145/1081706.1081750

Ofer Strichman and Rachel Tzoref-Brill (Eds.). 2017. Haifa Verification Confer-
ence, HVC 2017.

A.J. Summers and P. Miiller. 2018. Automating Deductive Verification for Weak-
Memory Programs. In TACAS’2018.

Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Zhendong Su. 2011. Synthesizing Method Sequences for High-coverage Testing.
In OOPSLA ’11.

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Genera-
tion for .NET. In TAP’08.

Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized Unit Tests. In Pro-
ceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (ESEC/FSE-13). ACM, New York, NY, USA, 253-262.

Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. 2018. JIT Feedback—
what Experienced Developers like about Static Analysis. International Confer-
ence on Program Comprehension (2018).

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan Scott, Ryan New-
ton, Philip Wadler, and Ranjit Jhala. 2018. Refinement Reflection: Complete Ver-
ification with SMT. In POPL’18.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018. Program Synthesis Using
Abstraction Refinement. POPL’18 (2018).

Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. 2010. Automated Fixing of Programs with Contracts. In
ISSTA ’10.

Greta Yorsh, Thomas Ball, and Mooly Sagiv. 2006. Testing, Abstraction, Theorem
Proving: Better Together!. In ISSTA 06.

https://doi.org/10.1145/1081706.1081750

0 NN W N =

1
2
3
4
5
6
7
8
9

10
11
12
13

Programming ’19, April 1-4, 2019, Genova, Italy

A USER STUDY TUTORIAL AND
EXPERIMENTS

This appendix lists all tutorial steps and programming tasks that
were part of the user study. Instructions, code and hints were dis-
played as a series of online web pages with a live web-based pro-
gramming environment. An archived version of the user study in-
cluding tutorial and programming tasks is available online at
https://esverify.org/userstudy-archived.

A.1 Tutorial 1: JavaScript Live Editing

Edit and run a simple JavaScript program

Instructions

This user study involves interactions with a programming environ-
ment. The source code can be edited directly and the program can
be executed in the browser. Test the editor by fixing the JavaScript
program such that it computes the correct area of a rectangle.
Provided Code

// This is a live demo, simply edit the code and click run

const height = 3;
const width = 4;

const area_of_rect = height * height;

// should print '12', but prints '9' instead

alert(area_of_rect)

Steps and Hints

(1) Click the run button to see the result of the computation.

(2) Change the source code to compute the correct area of a
rectangle.

(3) Click the run button again to test the code.

A.2 Tutorial 2: Program Verification With Pre-
and Postconditions

Verify the given annotated max function and fix potential issues.
Instructions

ESVERIFY extends JavaScript with special syntax to annotate func-
tions with pre- and postconditions. These are written as pseudo
function calls that are skipped during evaluation. The following
example includes an incorrect max function that should be fixed
such that it returns the maximum of its arguments and verifica-
tion succeeds.

Provided Code

// returns the maximum of the two provided numbers
function max(a, b) {

requires(typeof(a) === 'number');
requires(typeof(b) === 'number');
ensures(res => res >= a);

ensures(res => res >= b);// postcondition does not hold
if (a >= b) {

return a;
} else {

return a; // <- due to a bug in the implementation

1
2
3
4
5
6
7
8
9

10
11

Christopher Schuster and Cormac Flanagan

Steps and Hints

(1) Click the verify button to verify all assertions in the code.

(2) The second postcondition does not hold due to a bug in the
implementation.

(3) Change the source code to return the correct maximum of
aand b.

(4) Click the verify button again to ensure that the new code
verifies.

A.3 Tutorial 3: Interactive Verification
Condition Inspector

Inspect a verification issue to understand and interactively explore
assumptions and assertions.

Instructions

The following example includes a max function with missing pre-
conditions. To better understand the problem, the esveriry pro-
gramming environment provides an interactive inspector for veri-
fication conditions that explains assumptions, assertions and coun-
terexamples if available. This inspector also allows interactively
adding assumptions and assertions.

Provided Code

// returns the maximum of the two provided numbers
function max(a, b) {

ensures(res => res >= a);

ensures(res => res >= b);

if (a >= b) {
return a;
} else {
return b;
}
}

Steps and Hints

(1) Click the verify button to verify all assertions in the code.

(2) Click on the yellow triangle in front of line 3 to select the
verification condition.

(3) The panel on the right lists assumptions and assertions and
the editor shows values for the counterexample as popup
markers.

(4) According to the editor popups, the postcondition does not
hold if the arguments are not numbers. Check this hypoth-
esis by entering typeof a === 'number' next to ’Assume:’
and confirm this with by pressing the enter/return key.

(5) Also add the assumption typeof b 'number’.

(6) With these assumptions, the postcondition can be verified.

A.4 Tutorial 4: Verification and Debugger
Integration

Query the counterexample and step through the code.
Instructions

For each unverified verification condition, the counterexample val-
ues can be used to execute the code with an interactive debugger.
The debugger shows variables in scope, the current call stack and
allows step-by-step debugging. Additionally, the debugger can be
queried with watch expressions.

https://esverify.org/userstudy-archived

O 0 N N U W N =

gy
AW N = O

R
—_ O LV X NOUTAWN =

IDVE: an Integrated Development and Verification Environment

Provided Code

// returns the maximum of the two provided numbers
function max(a, b) {
requires(typeof(a)
requires(typeof(b)
ensures(res => res

"number');
"number');

ensures(res => res

if (a > b) {
return a;
}
if (b > a) {
return b;
I
}

Steps and Hints

(1) Click the verify button to verify all assertions in the code.

(2) Click on the first incorrect verification condition in line 5.

(3) The verification inspector in the panel on the right lists watch
expressions, variables in scope and the call stack.

(4) In this case, the counterexample uses 0 for both a and b.

(5) To query the return value, enter res next to "Watch:’.

(6) It seems the function returns undefined.

(7) To see the control flow, step through the code by clicking
Restart and then clicking Step Into about eight times.

(8) It seems none of the two if statements returned a value
when stepping through the code with this counterexample.

A.5 Experiment 1: Factorial

Instructions

This first experiment involves an incorrect factorial function. This
example can either be fixed by adding a stronger precondition or by
changing the if statement. You can use the verification inspector
and the integrated counterexample debugger. Click ‘Next’ if you
fixed the example or if you want to move to the next experiment.
Provided Code

// returns the factorial of the provided argument
function factorial(n) {
requires(Number.isInteger(n));
ensures(res => res >= 1);

if (n 0) {
return 1;
} else {
return factorial(n - 1) * n;

}

Steps and Hints
No steps or hints.

A.6 Experiment 2: Dice Rolls

Instructions
This experiment involves an function for rolling a six-sided dice.
A correct implementation is given and the following assertions

O 0 N Ul W N =

_
(=]

O 0 N U W =

—_ a -
A A WN =2 O

Programming ’19, April 1-4, 2019, Genova, Italy

should be verifiable but the postconditions are missing. The ver-
ification inspector is not available. Click 'Next’ if you fixed the ex-
ample or if you want to move to the next experiment.

Provided Code

// Roll a six-sided dice
function rollDice () {
// missing annotations
// ensures(res => ...);
return Math.trunc(Math.random() * 6) + 1;

}

const r = rollDice() + rollDice() + rollDice();
assert(r >= 3);
assert(r <= 18);

Steps and Hints

(1) Add missing postconditions with ensures(res => ...);
in order to verify the assertions.

(2) You can verify code but there is no verification inspector.

(3) Click Next’ if you fixed the example or if you want to move
to the next experiment.

A.7 Experiment 3: Digital 24 Hour Clock

Instructions

This is the third and final experiment of this user study. Given the
number of minutes since midnight, you should return time in a 24-
hour digital clock format. You need to add an additional precondi-
tion and change the returned value. (Hint: Math.trunc rounds a
number down to an integer.) You can use the verification inspec-
tor and the editor counterexample popups. Click 'Next” if you fixed
the example or if you want to finish the experiments.

Provided Code

// Given the number of minutes since midnight,

// returns the current hour and minute as object

// in a { h: 0-23, m: 0-59 } format

function clock_24 (min) {
requires(Number.isInteger(min) && 0 <= min);
ensures(res => res instanceof Object &&

'h' in res &5 'm' in res);
ensures(res => Number.isInteger(res.h) &&
0 <= res.h §& res.h < 24);

isInteger(res.m) &&
res.m < 60);

ensures(res => Number.
0 <= res.m &§&
return {
h: min / 60,
m: min % 60

1ih

Steps and Hints

(1) You need to add an additional precondition and change the
returned value. (Hint: Math. trunc rounds a number down
to an integer.)

(2) You can use the verification inspector and the editor coun-
terexample popups.

(3) Click Next’ if you fixed the example or if you want to finish
the experiments.

Programming ’19, April 1-4, 2019, Genova, Italy

B USER STUDY SURVEY ANSWERS

This appendix lists all survey answers by participants in the user
study. Test subjects were given a series of online tutorials and pro-
gramming tasks as listed in Appendix A, and then filled out an on-
line survey. For features of the programming environment, par-
ticipants could either select a given response or type their own
answer.

Participant 1

JavaScript experience: 5/5 Verification experience: No

Verification Did not use it It impairs the devel-
Inspector opment process
Counterexample Unsuccessfully tried It could be helpful
Popups using it with different UL
Integrated De- Unsuccessfully tried The feature is helpful
bugger using it

Comments:

Participant 2

JavaScript experience: 5/5 Verification experience: Yes

Verification Used this feature in The feature is helpful
Inspector experiments

Counterexample Used this feature in The feature is helpful
Popups experiments

Integrated De- Used this feature in It could be helpful
bugger experiments with different UL

Comments: I liked clicking on particular postconditions and be-
ing able to see counterexamples and add preconditions in the “scratch
pad” area.

Participant 3

JavaScript experience: 4/5 Verification experience: Yes

Verification Used this feature in The feature is helpful
Inspector experiments

Counterexample Did not use it It could be helpful
Popups with different UL
Integrated De- Did not use it It could be helpful
bugger with different UL

Comments: JS is most useful on front end development. But how
do you make assumptions/assertions for those UI/Networking re-
lated things?

Participant 4

JavaScript experience: 3/5 Verification experience: Yes

Verification Used this feature in It could be helpful
Inspector experiments with different UI
Counterexample Did not use it It could be helpful
Popups with different UL
Integrated De- Did not use it The feature is helpful
bugger

Comments: For a while I couldn’t even tell that the debugging
window was there. Perhaps have it always visible but only popu-
lated when something is selected.

Christopher Schuster and Cormac Flanagan

Participant 5

JavaScript experience: 2/5 Verification experience: Yes

Verification I tried to but was not It impairs the devel-
Inspector successful. opment process
Counterexample Unsuccessfully tried It could be helpful
Popups using it with different UL
Integrated De- Used this feature in The feature is helpful
bugger experiments

Comments: I've never worked with assume or ensure before, and
your modal text felt very jargon-y to me.

Participant 6

JavaScript experience: 5/5 Verification experience: Yes

Verification I tried to but was not The feature is helpful
Inspector successful.

Counterexample Did not use it It is not useful for de-
Popups velopment
Integrated De- Did not use it For more complex
bugger examples, but I can’t

judge the develop-
ment experience as I
did not use it.

Comments: I broke the interface when I tried to enter an assump-
tion.

Participant 7

JavaScript experience: 5/5 Verification experience: No

Verification I tried to but was not It could be helpful
Inspector successful. with different UL
Counterexample Unsuccessfully tried It could be helpful
Popups using it with different UI
Integrated De- Used this feature in It could be helpful
bugger experiments with different UI

Comments: Keep up the good work!

Participant 8

JavaScript experience: 3/5 Verification experience: Yes

Verification I tried to but was not It could be helpful
Inspector successful. with different UI
Counterexample Used this feature in It could be helpful
Popups experiments with different UI
Integrated De- Unsuccessfully tried It could be helpful
bugger using it with different UL

Comments: The tutorial window often covered parts of the inter-
face that I was required to interact with and there was no way to
dismiss it which made it challenging to use the interface particu-
larly in the example using the debugger. Entering assumptions in
the right panel does not seem to add them or update the code in
the editor which was confusing and makes the interface not seem
very useful if they need to be entered in two separate places.

IDVE: an Integrated Development and Verification Environment

Participant 9

JavaScript experience: 5/5 Verification experience: Yes

Verification Did not use it The feature is helpful
Inspector

Counterexample Used this feature in The feature is helpful
Popups experiments

Integrated De- Did not use it The feature is helpful
bugger

Comments: counterexample of 1499 for min was super helpful!!

Participant 10

JavaScript experience: 1/5 Verification experience: Yes
Verification I entered the ones Yes, but it also
Inspector from the tutorial as
suggested ical foundation in
introductory classes.
I would have liked a The feature is helpful
cheat sheet for the
parts that were not a
tutorial. Maybe I'm a
little tired and can’t
figure this out right
now. Getting the an-
swer like in the Tu-
torial would give me
something to chew
on.
Used this feature in
experiments

Counterexample
Popups

Integrated De-
bugger

The feature is helpful

Comments: What I want to know as a lay person is will there be
some Al auto-pilot who not only can tell me something is wrong,
as this does, but pretty much gives me the right answer every time.
That’s what I want, a glorified spellchecker.

Participant 11

JavaScript experience: 2/5 Verification experience: No

Verification Used this feature in It could be helpful
Inspector experiments with different UL
Counterexample Used this feature in The feature is helpful
Popups experiments

Integrated De- Did not use it It could be helpful
bugger with different UI

Comments: I didn’t like the font in the UL For instance the differ-
ence between == and === wasn’t immediately obvious. For some-
one who doesn’t program in JavaScript much this made the tutorial
more difficult to follow. But overall it’s an interesting prototype
and interactive development of assertions along with hints from
assertion editor seems like a useful tool for learning how asser-
tions work and adding them in the code.

calls for more log-

Programming ’19, April 1-4, 2019, Genova, Italy

Participant 12

JavaScript experience: 5/5 Verification experience: Yes

Verification Did not use it It could be helpful
Inspector with different UI
Counterexample Used this feature in The feature is helpful
Popups experiments

Integrated De- Did not use it It could be helpful
bugger with different UI

Comments: I had some Ul difficulty with the specific implemen-
tation of adding assumptions (e.g. having to add them in multiple
places) and another with the interface for the debugger being very
narrow and requiring scrolling to see the whole thing. I did find
this tool very compelling, although the hints to some extent obvi-
ated the need for the tool. It is very difficult to evaluate stuff like
this.

Participant 13

JavaScript experience: 4/5 Verification experience: No

Verification Did not use it The feature is helpful

Inspector

Counterexample Unsuccessfully tried It could be helpful

Popups using it with different UI

Integrated De- Did not use it It could be helpful

bugger with different UI
Comments:

Participant 14

JavaScript experience: 4/5 Verification experience: Yes

Verification Did not use it It could be helpful
Inspector with different UL
Counterexample Used this feature in The feature is helpful
Popups experiments
Integrated De- Unsuccessfully tried The feature is helpful
bugger using it

Comments:

Participant 15

JavaScript experience: 4/5 Verification experience: No

Verification I think I did on one It is not useful for de-
Inspector of them but don’t re- velopment

member.
Counterexample Used this feature in The feature is helpful
Popups experiments
Integrated De- Did not use it The feature is helpful
bugger

Comments: The counterexamples would be the most helpful con-
tribution of this project to my own programming practice. It makes
it easier and quicker to comprehensively test a function and catch
edge cases, because I don’t have to come up with the test values or
edge cases myself. And it feels better to me to code pre and post

Programming ’19, April 1-4, 2019, Genova, Italy

conditions explicitly, rather than write them in comments and ref-
erence comments or other documentation whenever I use the func-
tion in a sort of new way. I would want to write requires() and
ensures() statements in my own Javascript programs.

Participant 16

JavaScript experience: 3/5 Verification experience: No

Verification Unsuccessfully tried It could be helpful
Inspector using it with different UL
Counterexample Used this feature in The feature is helpful
Popups experiments

Integrated De- Used this feature in It could be helpful
bugger experiments with different UL
Comments:

Participant 17

JavaScript experience: 4/5 Verification experience: No
Verification They weren’t visible The feature is helpful
Inspector clearly since the in-

structions/help panel

was covering it
Counterexample Used this feature in The feature is helpful

Popups experiments
Integrated De- Did not use it It impairs the devel-
bugger opment process

Comments: Great tool!

Participant 18

JavaScript experience: 4/5 Verification experience: No
Verification Used this feature in It could be helpful
Inspector experiments with different UL
Counterexample Unsuccessfully tried The feature is helpful
Popups using it

Integrated De- Unsuccessfully tried The feature is helpful
bugger using it

Comments:

Christopher Schuster and Cormac Flanagan

	Abstract
	1 Introduction
	2 Overview of Verification with esverify and IDVE
	2.1 Verification with esverify
	2.2 Higher-order Functions
	2.3 Interactive Tool Support for Verification
	2.4 Basic Line Markers
	2.5 Verification Condition Inspector
	2.6 Counterexample Popups
	2.7 Debugger Integration

	3 Automatic Test Generation for Counterexamples
	3.1 Verification Process
	3.2 Verification Errors and Assertion Violations
	3.3 Dynamic Checking of Assertions
	3.4 Synthesis of Counterexample Values
	3.5 Generating Counterexample Function Calls

	4 Evaluation and User Study
	4.1 Research Questions
	4.2 Methodology
	4.3 Results
	4.4 Threats to Validity

	5 Related Work
	5.1 Program Verification
	5.2 Integrated Verification Tools
	5.3 Automatic Test Generation

	6 Conclusions
	References
	A User Study Tutorial and Experiments
	A.1 Tutorial 1: JavaScript Live Editing
	A.2 Tutorial 2: Program Verification With Pre- and Postconditions
	A.3 Tutorial 3: Interactive Verification Condition Inspector
	A.4 Tutorial 4: Verification and Debugger Integration
	A.5 Experiment 1: Factorial
	A.6 Experiment 2: Dice Rolls
	A.7 Experiment 3: Digital 24 Hour Clock

	B User Study Survey Answers

