
Live Programming for Event-based Languages
Christopher Schuster, Cormac Flanagan

Software and Languages Research Group, University of California, Santa Cruz

Short paper presented at REBLS'15 workshop. Online Live Demo: http://levjj.github.io/rde/ Source Code: http://github.com/levjj/rde/ Contact: {cschuste,cormac}@ucsc.edu

Tracking changes to the code and the state
enables time traveling in two dimensions

The global application state gets
initialized on program start

var i = 0;

function inc() { ++i; }

function render() {
 return (
 <div>Count: {i}
 <button onclick={inc}>Inc!</button>
 </div>);
}

Event handlers can change
the state but not the output

<div id="c">Count: 0</div>
<button id="b">Inc!</button>

<script>
 var i = 0;
 $("#b").on("click", function() {
 $("#c").html("Count: " + (++i));
 });
</script>

Imperative updates to render output and register event handlers hinder live programming
Example: JavaScript code with DOM manipulation

Seperating rendering and event handling in an event-based language enables live
programming, time travel and continous feedback

The output is always up-to-date
with the current state and code

The render function computes the output but cannot change the state
(Here, we use JSX but other ways of generating output would also work)

Semantics for Live Programming and Time Travel
in Event-based Languages

Navigating History of Execution and Code Versions

Future Work
Enforce constraints (static analysis, contracts, ...)
Optimize performance (incr. computation for re-rendering)
Improved time travel (copy-on-write to keep old state)
Programming by Example (direct manipulation, synthesis,...)

Related Work / Inspirations
Bret Victor: Inventing on Principle (2012)
Burckhardt et. al. It’s Alive! Continuous Feedback... (PLDI ’13)

Squeak/Smalltalk Elm React/Redux

Changing "Count: " to "Clicks: " should
update the output immediately but ...

... reloading the application resets our state: i... rerunning this function increments i!

Code for generating output is spread
accros the program

Changes to code and state might cause the
output to be outdated

Restarting the program resets the state which might
delay the programming/debugging process

Challenges
Updating functions in the active call stack

Output out of date

Updating function values/closures in the state

New code might not be compatible with old state

Proposed Solutions
Use single event loop to update code
Only update when no event handler is running

Seperate rendering from event handling
render cannot change state, handle cannot change output

Restrict application state
Closures/function values not allowed in application state

Programmer may need to restart

No general Solution For Dynamic Software Updating/Hot swapping - Design Space of Alternatives

✓

✓
!

✗

Replay recorded events

state+code always consistent
slow

Continue with previous state

potentially inconsistent
retains state and context

Specify migrations manually

useful for production systems

"Best Effort" data migration

works well for small changes

Live Programming aims to provide quick and continous feedback, so needs to minimize the impact on development/debugging

Try it out yourself!
levjj.github.io/rde

