
A Light-Weight Effect System for JavaScript

Christopher Schuster Cormac Flanagan
University of California, Santa Cruz
{cschuste,cormac}@ucsc.edu

Abstract
While types describe what values an expression computes, the ef-
fects of an expression describe how it is computed, e.g. whether
its evaluation manipulates global state, accesses the file system or
may throw certain exceptions. Having to specify types and effects
throughout the program might not be feasible in a scripting lan-
guage but selective, sparse effect annotations may still help to pre-
vent many programming errors. This paper described the design
and implementation of a system that statically checks effects in oth-
erwise dynamically-typed JavaScript programs.

1. The Need for Effect Checking
In most languages, the effects of an expression are often only
implicitly defined, if at all. One approach used in pure functional
programming languages like Haskell is to express effects in terms
of monads at the cost of additional complexity.

However, it is possible to get some of the benefits of effect
checking without fully specifying all types and effects by allow-
ing the programmer to tag functions with the different kinds of
effects involved in evaluating the function and annotate function
arguments with the set of expected effects.

As a motivating example, the following snippet of JavaScript
code calls alert from within a web worker1 which causes a crash
in all current browsers.

startWorker(function () {
alert (); // crashes at runtime

});

It is easy to see that this example will crash but more complex
examples could call alert indirectly in the worker code depending
on conditions that are difficult to cover with tests. It is possible
to dynamically enforce that alert is not called in a worker by
tracking the allowed effects in the current dynamic scope. However,
this would not be a significant improvement over the eventual crash
without the check. By statically checking effect annotations, it
is possible to prevent this kind of runtime crash for all possible
executions.

1 An HTML5 web worker runs JavaScript in the background without access
to the page DOM. Here, a non-standard startWorker function is used.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
STOP’15, July 6, 2015, Prague.
Copyright c© 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1. The editor automatically highlights effect checking er-
rors in JavaScript programs. In this example, the static analysis has
to take objects, aliasing, and closures into account to correctly de-
tect the error (and potential crash) caused by the seemingly unre-
lated assignment in the last line.

Statically checking effect annotations requires reasoning about clo-
sures, object properties and aliasing, therefore a complete and
sound solution is undecidable. Instead, our analysis overapprox-
imates effects but never misses a potential effect error, so the crash
in Figure 1 is correctly detected but in the following example our
analysis erroneously reports an error:

startWorker(function () {
if (false) alert (); // would never crash

});

2. Static Analysis
As first step of the analysis, JavaScript code gets rewritten using
JS WALA [1] to the following language (“JS Normal Form”):2

x, y, z : Identifiers p ∈ P : Property names

f ∈ Λ : Function definitions o ∈ Ω : Object literals

s ::= x = λf y. { s return z } | x = {p : y}o
| x = y | x = y(z) | if (x) {s} else {s}
| x = y[z] | x = y.p | x[y] = z | x.p = z

2 Some syntactic forms like literals, arrays, method and constructor calls
were omitted from the formalism as they do not add new insights.

All function definitions λf and object literals { ... }o are assigned
unique names/indices f and o. Additionally, all property names p
occurring in the program are known in advance.

Based on control flow-insensitive set constraint-based analy-
sis [2, 8], we approximate the type τ with a subset of all possible
function definitions Λ and object literals Ω with two functions or
objects considered to be the same if they originate from the same
function definition or object literal.

Λ = λ1, λ2, ... Ω = {...}1, {...}2, ...
τ ∈ P(Λ ∪ Ω) (Type approximation)

The goal of the static analysis is to assign every variable x a
type τx, every function λf a return type τf,R and arguments types
τf,j and every object literal {}o a type τo,p for every property p.
To infer a suitable assignment, the analysis generates subset (type
inclusion) constraints to a constraint system C for every statement
in the program according the following rules:3

τx : x→ τ (Variable) τf,j : Λ×N → τ (Argument)

τo,p : Ω× P → τ (Property) τf,R : Λ→ τ (Return)

C(x = y) = {τx ⊇ τy}
C(x = y.p) = {∀o ∈ τy. τx ⊇ τo,p}
C(x = y[z]) = {∀o ∈ τy. ∀p ∈ P. τx ⊇ τo,p}
C(x.p = z) = {∀o ∈ τx. τo,p ⊇ τz}
C(x[y] = z) = {∀o ∈ τx ∀p ∈ P. τo,p ⊇ τz}
C(x = {p : y}o) = {τo,p ⊇ τy, τx ⊇ {o}}
C(x = y(zj)) = {∀f ∈ τy. τx ⊇ τf,R, τf,j ⊇ τzj}
C(x = λi yj . { s return z }) =

{τx ⊇ {f}, τyj ⊇ τf,j , τf,R ⊇ τz} ∪
⋃
C(s)

C(if (x) {st} else {se}) =
⋃
C(st) ∪

⋃
C(se)

This constraint system includes a complete call graph for all
functions and forms the basis for the following analysis of the effect
contracts.

3. Effect Checking
In order to specify effects, we extend function definitions in the
language to allow a set of effect names [e] as well as expected
effects [!e] to function arguments.

s ::= . . . | x = λf [e] y[!e]. { s return z } (e ∈ E : Effects)

The effects are simple tags/strings which cannot be parametrized.
In addition to types, the constraint system now also infers a map-
ping from functions λf to their effects φf based on two constraint
generation rules. The first rule adds effect and effect restrictions;
the second rule propagates effects from callee to the calling func-
tion which is the current function scope c during constraint gener-
ation Cf .

φf : Λ→ P(E) (Function effects)

C (x = λf [ek] yj [!ej,l]. { s return z }) =

{φf ⊇ {ek}, ∀f ′ ∈ τf,j . φf ′ 6⊇ {ej,l}} ∪
⋃
Cf (s)

Cf (x = y(z)) = {∀f ′ ∈ τy. φf ⊇ φf ′}

3 These constraints are generated with complexity O(n3) [8].

The resulting constraint system can then be solved with an SMT
solver like Z3 [5]. If the system is unsatisfiable, the unsatisfiable
core of constraints is used to highlight code in the original program
involved in the effect errors (see Figure 1).

4. Related Work
Prior work on effect systems encompasses decades of research
and often goes beyond the restricted set of effect tags presented
in this paper by better integrating the effect system with the op-
erational semantics of the language [3, 9]. Effect systems with
algebraic effects [10] allow an even richer effect language, e.g.
Brady [4] showed an effect system for Idris in which effects can
be parametrized by other types, so a STATE Int effect would al-
low type-safe state updates on integer values.

Additionally, set constraint-based program analysis [2, 8] for
JavaScript has been explored before, e.g. the idea of typing objects
and functions by their generating definition or literal has previously
been applied by Hackett and Guo [7] to improve the performance
of the SpiderMonkey JIT compiler.

5. Discussion
Effects are an integral part of the program behavior, so leaving these
unspecified might increase the potential for accidental program-
ming errors. Unfortunately, specifying all the types and effects in a
program might hinder scripting and prototyping, so a light-weight
effect system which automatically infers unspecified effects might
serve as compromise solution.

Our prototype implementation4 shows that effects can be checked
statically in a language like JavaScript. It requires effect anno-
tations which are automatically desugared by a set of sweet.js
macros [6]. However, other ways of specifying effect contracts
might be of interest for future work.

Apart from restricting certain kinds of programmer-specified
effects like DOM or file system access, effect contracts could also
be used to enforce checked exceptions as used in Java. Furthermore,
effect annotations as presented in this paper can also be seen as
statically-checked higher-order temporal contracts which is part of
a broad area of research in contract systems.

References
[1] JS WALA - WALA Analyses and tools that are implemented in

JavaScript. https://github.com/wala/JS_WALA.
[2] A. Aiken and E. L. Wimmers. Type Inclusion Constraints and Type

Inference. FPCA ’93, New York, NY, USA, 1993.
[3] F. Bañados Schwerter, R. Garcia, and E. Tanter. A theory of gradual

effect systems. ICFP ’14, New York, NY, USA, 2014. ACM.
[4] E. Brady. Programming and Reasoning with Algebraic Effects and

Dependent Types. ICFP ’13, New York, NY, USA, 2013.
[5] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Tools

and Algorithms for the Construction and Analysis of Systems, LCNS.
Springer Berlin Heidelberg, 2008.

[6] T. Disney, N. Faubion, D. Herman, and C. Flanagan. Sweeten Your
JavaScript: Hygienic Macros for ES5. DLS ’14, pages 35–44, 2014.

[7] B. Hackett and S.-y. Guo. Fast and Precise Hybrid Type Inference for
JavaScript. PLDI ’12, New York, NY, USA, 2012.

[8] N. Heintze. Set-based Analysis of ML Programs. SIGPLAN Lisp
Pointers, VII(3), July 1994.

[9] D. Marino and T. Millstein. A generic type-and-effect system. TLDI
’09, New York, NY, USA, 2009. ACM.

[10] G. Plotkin and M. Pretnar. Handlers of Algebraic Effects. In Prog.
Languages and Systems, LNCS. Springer Berlin Heidelberg, 2009.

4 Source and demo are available at https://github.com/levjj/jsfxs

https://github.com/wala/JS_WALA
https://github.com/levjj/jsfxs

	The Need for Effect Checking
	Static Analysis
	Effect Checking
	Related Work
	Discussion

